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Preface
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¿is is a book about the foundations of mathematics—a topic once of
interest to outstandingmathematicians, such asDedekind, Poincaré, and
Hilbert, but today sadly neglected.¿is neglect is unfortunate for several
reasons:

• As mathematics splits into more and more specialties, the need for a uni-
fying viewpoint becomes more acute.

• Foundations unify not only mathematics but also the neighboring disci-
plines of computer science and physics.

• Recent advances in mathematical logic throw new light on the founda-
tions of analysis, and on the elusive concept of mathematical “depth.”

¿is book aims at the last point in particular, by focusing on the topic
of reverse mathematics.

As its name suggests, reverse mathematics looks at the concept of
proof in the opposite to normal direction. Instead of seeking the con-
sequences of given axioms, it seeks the axioms needed to prove given
theorems. ¿is is actually an old idea, at least in the foundations of geo-
metry. From the time of Euclid until the nineteenth century it was a burn-
ing question whether the parallel axiom was needed to prove theorems
such as the Pythagorean theorem. We review the history of the parallel
axiom in chapter  of this book, as a case study in reverse mathemati-
cal ideas, together with the similar story of the axiom of choice in set
theory.

Although both these axioms illustrate the idea of reverse mathemat-
ics, the subject as it is understood today liesmostly in a narrowbut impor-
tant region between geometry and set theory: the theory of real numbers,
which is the foundation of calculus, analysis, and most of mathematical
physics. (Reversemathematics has alsomade interesting contributions to
algebra, combinatorics, and topology which we mention more brie�y.)
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¿e real numbers, as we understand them today, emerged from nine-
teenth century e�orts to arithmetize analysis and geometry. By building
real numbers from sets of rational numbers (and hence, ultimately, from
sets of natural numbers) it becomes possible to encode sequences of real
numbers and arbitrary continuous functions—and hencemost of the ob-
jects of analysis—by sets of natural numbers.We review the arithmetiza-
tion of analysis, and also the basic theorems of analysis, in chapters  and
. A er this we are ready to ask: which axioms do we need to prove these
basic theorems? ¿e answer, roughly, is a set of axioms for the natural
numbers (the Peano axioms) plus a suitable set existence axiom.

Now set existence axioms come in various strengths, depending on
the strength of the theorems we wish to prove.¿e lowest useful strength
turns out to be intimately related to the foundations of computation: it
asserts the existence of computable sets. ¿is in turn involves a study of
the concept of computation, which merges with analysis because both
have a common basis in arithmetic. A er an informal introduction to
computability in chapter  we develop a formal concept of computation,
and its arithmetization, in chapter .

In chapters  and we bring together the ideas of analysis, arithmetic,
and computation in some axiom systems for analysis, known as RCA,
WKL, and ACA. ¿ese systems, which are distinguished mainly by set
existence axioms of increasing strength, between them provemost of the
basic theorems of analysis.More remarkably, they sort the basic theorems
into three levels because, once above the “base” level of RCA, most the-
orems are equivalent to the set existence axiom of the system that proves
them.¿is makes each of these set existence axioms the “right axiom” in
the sense articulated by Friedman ():

When a theorem is proved from the right axioms, the axioms can
be proved from the theorem.

We will see, for example, that RCA can prove the intermediate value
theorem; the de�ning axiom of WKL is the right axiom to prove the
Heine-Borel theorem and the extreme value theorem; and the de�ning
axiom of ACA is the right axiom to prove the Cauchy convergence cri-
terion and the Bolzano-Weierstrass theorem.

¿us in reverse mathematics we meet the usual cast of characters
from an introductory real analysis course, but in an entirely new story.
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In chapter  we give some glimpses of the bigger picture of analysis,
computation, and logic, which will hopefully prepare the reader for spe-
cialist treatments of reverse mathematics, notably Simpson (). ¿e
present book is very much for non-specialists—in some ways a sequel
to my book Elements of Mathematics. From Euclid to Gödel. It develops
computability and logic far enough to explain results that Elements of
Mathematics could onlymention, but the latter book is not a prerequisite
for this one. Anyone at an upper undergraduate level with an interest in
foundations should be able to approach the reverse mathematics in this
book directly.¿e same goes, of course, for professional mathematicians
who want to refresh their memory of foundations and to see how the
subject has reinvented itself in recent times.

Acknowledgements. I thank Harvey Friedman for information on
the history of reverse mathematics, Keita Yokoyama for his insights on
topology, and two anonymous referees for many helpful comments and
corrections. My wife Elaine as usual did sterling work in proofreading,
and Vickie Kearn and her team at Princeton University Press were ever-
helpful and meticulous in the production of the book.

John Stillwell
San Francisco,  November 
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Historical Introduction

¿e purpose of this introductory chapter is to prepare the reader’s mind
for reverse mathematics. As its name suggests, reverse mathematics seeks
not theorems but the right axioms to prove theorems already known.¿e
criterion for an axiom to be “right” was expressed by Friedman () as
follows:

When the theorem is proved from the right axioms, the axioms can
be proved from the theorem.

Reversemathematics began as a technical �eld ofmathematical logic, but
its main ideas have precedents in the ancient �eld of geometry and the
early twentieth-century �eld of set theory.

In geometry, the parallel axiom is the right axiom to prove many the-
orems of Euclidean geometry, such as the Pythagorean theorem. To see
why, we need to separate the parallel axiom from the base theory of Eu-
clid’s other axioms, and show that the parallel axiom is not a theorem of
the base theory. ¿is was not achieved until . It is easier to see that
the base theory can prove the parallel axiom equivalent to many other
theorems, including the Pythagorean theorem. ¿is is the hallmark of a
good base theory: what it cannot prove outright it can prove equivalent
to the “right axioms.”

Set theory o�ers a more modern example: a base theory called ZF, a
theorem that ZF cannot prove (thewell-ordering theorem) and the “right
axiom” for proving it—the axiom of choice.

From these and similar examples we can guess at a base theory for
analysis, and the “right axioms” for proving some of its well-known
theorems.
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. EUCLID AND THE PARALLEL AXIOM

¿e search for the “right axioms” for mathematics began with Euclid,
around  bce, when he proposed axioms for what we now call Eu-
clidean geometry. Euclid’s axioms are now known to be incomplete; nev-
ertheless, they outline a complete system, and they distinguish between
really obvious “basic” axioms and a less obvious one that is crucial for
obtaining the most important theorems. For historical commentary on
the axioms, see Heath ().

¿e basic axioms say, for example, that there is a unique line through
two distinct points and that lines are unbounded in length. Also basic,
though expressed only vaguely by Euclid, are criteria for congruence of
triangles, such as what we call the “side angle side” or SAS criterion: if
two triangles agree in two sides and the included angle then they agree
in all sides and all angles. (Likewise ASA: they agree if they agree in two
angles and the side between them.)

Using the basic axioms it is possible to prove many theorems of a
rather unsurprising kind. An example is the isosceles triangle theorem: if
a triangle ABC has side AB = side AC then the angles at B and C are
equal. However, the basic axioms fail to prove the signature theorem of
Euclidean geometry, the Pythagorean theorem, illustrated by �gure ..

Figure . : ¿e Pythagorean theorem

As everybody knows, the theorem says that the gray square is equal
to the sum of the black squares, but the basic axioms cannot even prove
the existence of squares. To prove the Pythagorean theorem, as Euclid
realized, we need an axiom about in�nity: the parallel axiom.
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¿e Parallel Axiom

I call the parallel axiom an axiom about in�nity because it is about lines
that do not meet, no matter how far they are extended—and one of Eu-
clid’s basic axioms is that lines can be extended inde�nitely. ¿us paral-
lelism cannot be “seen” unless we have the power to see to in�nity, and
Euclid preferred not to assume such a superhuman power. Instead, he
gave a criterion for lines not to be parallel, since a meeting of lines can
be “seen” a �nite distance away.

Parallel axiom. If a line n falling on lines l and m (�gure .) makes
angles α and β with α + β less than two right angles, then l and mmeet
on the side on which α and β occur.

l

m
n

β

α

Figure . : Angles involved in the parallel axiom

It follows that if α+β equals two right angles (that is, a straight angle)
then l and m do not meet. Because if they meet on one side (forming
a triangle) they must meet on the other (forming a congruent triangle,
by ASA), since there are angles α and β on both sides and one side in
common (�gure .).¿is contradicts uniqueness of the line through any
two points.

l

m
n

α β

αβ

Figure . : Parallel lines
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¿usEuclid’s axiom about non-parallel lines implies that parallel lines
exist. From parallel lines we quickly get the theorem that the angle sum
of a triangle is a straight angle (or π, as we will write it from now on), by
the construction shown in �gure .. From this we �nd in turn that an
isosceles triangle with angle π~ between its equal sides has its other an-
gles equal to π~, so putting two such triangles together makes a square.

A B

C
α γ β

α β

Figure . : Angle sum of a triangle

¿e proof of the Pythagorean theorem can now get o� the ground,
and there are many ways to complete it. Probably the one most easily
“seen” is shown in �gure ., in which the gray square and the two black
squares both equal the big square minus four copies of the right-angled
triangle.

Figure . : Seeing the Pythagorean theorem

Equivalents of the Parallel Axiom

Many mathematicians considered the parallel axiom to be a “blemish”
on Euclid’s system—this is precisely what Saccheri () called it—so
they tried to show that it followed from the other axioms.¿eir attempts
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usually took the form of deducing the parallel axiom from a seemingly
more obvious statement, in the hope of reducing the problem to a simpler
one. Some of the statements found to imply the parallel axiom were:

• existence of rectangles (al-Haytham, al-Tusi in medieval times),
• existence of similar triangles of di�erent sizes (Wallis in ),
• angle sum of triangle = π (in Legendre’s Éléments de géométrie, ),
• three noncollinear points lie on a circle (Farkas Bolyai ()).

All of these theorems follow from the parallel axiom, so they are equiv-
alent to it in strength, in the sense that their equivalence to the parallel
axiom can be proved using only the other axioms. Of course, this no-
tion of equivalent strength is trivial if the parallel axiom itself is provable
from the other axioms, but by  the hopes of such a proof were fading.
Farkas Bolyai’s own son, János, was one of the main explorers of a hypo-
thetical non-Euclidean geometry in which the parallel axiom (and hence
the four theorems above) is false, yet Euclid’s other axioms are true.

But before seeing non-Euclidean geometry, it helps to look at geom-
etry on the sphere. Spherical geometry is clearly di�erent from the Eu-
clidean geometry of the plane—not only in the absence of parallels, but
also in the absence of in�nite lines—yet they share a common language
of “points,” “lines,” and “angles.” Seeing two di�erent interpretations of
these words will make it easier to grasp yet another interpretation, or
model—a model of non-Euclidean geometry.

. SPHERICAL ANDNON-EUCLIDEAN GEOMETRY

Just as circles and lines in the plane are part of two-dimensional Eucli-
dean geometry, spheres and planes are part of three-dimensional Eu-
clidean geometry. Indeed they arementioned, thoughnot deeply studied,
in Euclid’sElements, BookXI.¿e ancientGreeksmade a serious study of
spherical geometry, particularly spherical trigonometry, in their study of
astronomy, because the stars appear from the earth to be �xed on a heav-
enly sphere. Later, navigators on the earth also took an interest in spher-
ical geometry. For them, the natural concept of “line” is that of a great
circle—the intersection of the sphere with a plane through its center—
because a great circle gives the shortest distance between any two of its
points. ¿e concept of “angle” between any two such “lines” also makes
sense, as the angle between the corresponding planes (or, what comes to
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the same thing, the angle between the tangents to the great circles).
Indeed, it is o en easier to describe a spherical triangle by its angles

rather than the lengths of its sides. All spherical triangles with the same
angles in fact have the same size, because of a famous theoremofHarriot1
from : the angle sum of a spherical triangle, minus π, is proportional to
its area. ¿ere are several ways to tile the surface of the sphere with con-
gruent triangles. Figure . shows one in which the sphere is divided into
 triangles, each of which has angles π~,π~,π~. Alternate triangles
have been cut out of the sphere, to make it easier to see them all, and the
sphere has been illuminated from the inside. ¿is then is the standard

Figure . : Tiling the sphere with triangles

model of spherical geometry: “points” are ordinary points on the sphere,
“lines” are great circles, and “angles” are the angles between the tangents
to the great circles at their point of intersection. “Distance,” if we wish to
use the concept, is the distance between points on the sphere, measured
along the (shorter) piece of the great circle connecting them.

Now we move to another model, by projecting the sphere onto the
plane. Speci�cally, we use the light inside the sphere (at its north pole)
to cast a shadow on the plane. ¿e result is shown in �gure .. ¿e pic-

1¿omas Harriot was mathematical consultant to Sir Walter Raleigh, and traveled
with him on some of his voyages.
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Figure . : Projecting the sphere onto the plane

ture shows two remarkable features of projection from the north pole,
which is known as stereographic projection:

• circlesmap to circles (or, in exceptional cases, to straight lines, which
we might call “circles of in�nite radius”), and

• angles are preserved.

¿us “points” are still points, “lines” are still circles, and “angle” is still
the angle between the tangents to the circles. “Distance,” alas, is not a
Euclidean distance of any kind, since equal distances on the sphere can
be mapped to unequal Euclidean distances in the plane. Likewise, “area”
is not Euclidean area, but we can easily measure it by the angle sum
minus π.

Strictly speaking, we have not projected the whole sphere onto the
plane, but the sphere minus its north pole (the light source). To correct
for this we add a point at in�nity to the plane—a point approached by
the shadows of points on the sphere as they approach the north pole.¿e
point at in�nity completes each straight line to a closed curve, so that they
too become circles.¿us our second interpretation of spherical geometry
models all “lines” by circles, and “angles” by angles between circles. In the
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next subsection we will see a similar model of non-Euclidean geometry.

Models of Non-Euclidean Geometry

Beltrami () discovered several models of non-Euclidean geometry;
that is, of Euclid’s basic axioms plus a non-Euclidean parallel axiom stat-
ing that for any line l and a point P outside it, there is more than one line
m that does not meet l. ¿e easiest of Beltrami’s models to view in its
entirety is the one shown in �gure ..

Figure . : ¿e conformal disk model

In thismodel, “points” are points in the interior of the disk, “lines” are
circular arcs perpendicular to the boundary circle of the disk (counting
the straight line segments through the disk center as circles of in�nite
radius) and “angle” is the angle between circles. As in spherical geometry,
triangles are congruent if they have the same angles, so in this picture
the disk is �lled with in�nitely many congruent triangles, each with the
angles π~,π~,π~.¿ese are the smallest triangles that can tile the non-
Euclidean plane and, as in spherical geometry, their area is determined
by their angle sum: π minus the angle sum of a non-Euclidean triangle is
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proportional to its area.
As with the plane model of spherical geometry, the precise de�nition

of “distance” is complicated. But here one gets a better feel for it because
there are so many triangles, each of the same non-Euclidean size. One
sees, for example, that in�nitely many triangles lie along each “line,” so
each “line” is of in�nite “length.” It is even possible to accept that each
“line” gives the least “distance” between any two points in the disk, since
one counts fewer triangles when travelling on a circular arc perpendic-
ular to the boundary than on any other route. ¿us one can understand
how the model satis�es the basic axioms of Euclid. But it clearly does not
satisfy the parallel axiom. If one takes the vertical “line” l through the
center of the disk and the point P, say, somewhat to its right, then there
are di�erent “lines” m and n through P that do not meet l, as is clear
from �gure ..

l m

n

P

Figure . : Failure of the parallel axiom

So, when the details of Beltrami’s construction are checked, one has
a model for the basic axioms of Euclid plus a counterexample to the par-
allel axiom. ¿erefore, the parallel axiom does not follow from the other
axioms of Euclid, and hence the theorems equivalent to the parallel ax-
iom (such as the four mentioned in the previous section) likewise do not
follow from Euclid’s other axioms. However, the equivalences between
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the parallel axiom and these theorems are provable from Euclid’s other
axioms. ¿is situation is typical of reverse mathematics: we have a base
theory which is too weak to prove certain desirable theorems, but strong
enough to prove equivalences between them.

New Foundations of Geometry and Mathematics

¿ediscovery of non-Euclidean geometry shook the foundations ofmath-
ematics, which before the nineteenth century had been implicitly based
on Euclid’s concepts of “line” and “plane.” By creating doubts about the
meaning of “line” and “plane,” non-Euclidean geometry prompted a
search for new foundations in arithmetic, since the fundamental prop-
erties of numbers were not in doubt.

In particular, the “line” was rebuilt as the system R of real numbers,
which has both algebraic and geometric properties.¿enext few sections
describe the emergence of geometry based on, or in�uenced by, the real
number concept. In chapter  we will see how the real numbers also be-
came the foundation of analysis.

. VECTOR GEOMETRY

¿e�rstmajor advance in geometry a er theGreekswasmade by Fermat
and Descartes in the s, and published in the Geometry of Descartes
(). ¿eir innovation was to use algebra in geometry, describing lines
and curves by equations, thereby reducing many problems of geometry
to routine calculations. But before they could “algebraicize” geometry
they had to arithmetize it, a step that already took them far beyond Eu-
clid. In fact, it was the �rst step towards a sweeping arithmetization of
geometry and analysis that occurred in the nineteenth century.

As every mathematics student now knows, the Euclidean plane is
arithmetized by assigning real number coordinates x and y to each point
P in the plane. ¿e numbers x and y are visualized as the horizontal
and vertical distances to P from the origin O, in which case the distance
SOPS of P from O is

»
x + y by the Pythagorean theorem (�gure .).

But P can be de�ned as the ordered pair2 `x, ye, and its distance from O
de�ned as

»
x + y. More generally, the distance from P = `x, ye to

2In this book I use `a,be to denote the ordered pair of a and b, because (a,b)will be
on duty to represent the open interval between a and b.
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P = `x, ye is de�ned by

SPPS =
»

(x − x) + (y − y).

Points `x, ye lie on a line if they satisfy an equation of the form ax+by+c
=  (which is why we call such equations linear), and equations for cir-
cles are quadratic equations expressing constant distance for a point. For
example, the points at distance  fromO satisfy the equation x+ y = .

O

P = `x, ye

x

y» x
+ y



Figure . : Coordinatizing the plane

¿usonehas an easy algebraic translation of all of Euclid’s geometry—
and more, since there is no obstacle, other than algebraic di�culty, to
the study of curves satisfying arbitrary polynomial equations. ¿us Eu-
clidean geometry and algebraic geometry are not a perfect match. Eu-
clidean geometry ought to be “more linear.”

Grassmann’s Linear Geometry

¿eperfect algebraic match for Euclidean geometry was found by Grass-
mann in the s, in the concept of a real vector space. His �rst works on
the subject, Grassmann () andGrassmann () were impenetrable
to other mathematicians, and his idea started to gain traction only when
Peano () gave axioms for real vector spaces.

De�nition. A real vector space is a set V of objects called vectors (de-
noted by boldface letters), which includes a vector called the zero vector,
and for each u > V a vector −u called the negative of u. V has operations
of addition and scalar multiplication (by a,b, c, . . . > R) satisfying the
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following conditions:

u + v = v + u
u + (v +w) = (u + v) +w

u +  = u
u + (−u) = 

u = u
a(u + v) = au + av
(a + b)u = au + bu
a(bu) = (ab)u

Typically V = Rn = �`x, . . . ,xne � x, . . . ,xn�, with  the origin, +
the usual sum of n-tuples, and scalar multiplication by a > R given by

a`x, . . . ,xne = `ax, . . . ,axne.

¿is vector space is called the real n-dimensional a�ne space. It is not yet
a Euclidean space because it has no concept of distance or angle, but it
has considerable geometric content.Rn has lines, including parallel lines,
and also a concept of “length in a given direction.” For example, one can
say that 

v > R is the midpoint of the line from  to v, and in general
av is a times as far from  as v is. Another concept that makes sense in
vector geometry is that of center of mass. In particular, the center of mass
of the triangle with vertices u,v,w is the point 

 (u + v +w).
To promote vector geometry to Euclidean geometry one adds the

concept of inner product of vectors u and v, written u ċ v:
De�nition. If u = `u, . . . ,une and v = `v, . . . ,vne then

u ċ v = uv +� + unvn.

In particular, in R we have

u ċ u = u + u,

so the Euclidean length SuS of u is given by SuS =
º
u ċ u. As Grassmann

() remarked, the de�nition of inner product makes the Pythagorean
theorem true almost by de�nition.

¿e Euclidean angle concept also derives from the inner product be-
cause

u ċ v = SuSSvS cos θ,
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where θ is the angle between the lines from  tou andv respectively.¿us
Grassmann () found another way to describe Euclidean geometry as
a “base theory” plus the “right axiom” to derive the Pythagorean theorem.
Interestingly, his base theory (the vector space axioms) admits extension
by a di�erent axiom that gives non-Euclidean geometry.

Making a Vector Space Non-Euclidean

¿e key property of Grassmann’s inner product is that it is positive def-
inite; that is, SuS = u ċ u A  if u x , so every nonzero vector has pos-
itive length. Einstein’s theory of special relativity motivated Minkowski
() to introduce a non-positive de�nite inner product on the spaceR

of spacetime vectors `t,x, y, ze, namely

`t,x, y, ze ċ `t,x, y, ze = −tt + xx + yy + zz.

With the Minkowski inner product u = `t,x, y, ze has “length” SuS given
by

SuS = −t + x + y + z,
which clearly is zero or negative for many vectors. To make visualization
easier we consider the corresponding concept of length on the space R

of vectors u = `t,x, ye, namely

SuS = −t + x + y.

¿is means that in R we have a “sphere3 of radius
º
− about O,” con-

sisting of the vectors u = `t,x, ye such that

−t + x + y = −.

¿is surface in R is the hyperboloid x + y − t = .
It turns out that the Minkowski distance on the surface of the hyper-

boloid gives a non-Euclidean geometry—the same as that of the Beltrami
model in the previous section. Figure ., which is derived from a pic-
ture by Konrad Polthier of the Freel University of Berlin, shows the con-
nection between the two. ¿e tiling of the disk projects to a tiling of the
hyperboloid by triangles that are congruent in the sense of Minkowski
distance.

3In a remarkable prophecy, Lambert () conjectured that there might be a geome-
try on the sphere of imaginary radius for which the angle sum of a triangle is less than π,
and where the area of a triangle is proportional to πminus its angle sum. ¿is is indeed
what happens in Beltrami’s non-Euclidean geometry.
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Figure . : ¿e hyperboloid model of non-Euclidean geometry

. HILBERT’S AXIOMS

Euclid’s Elements is the �rst organized presentation of mathematics that
survives from ancient times. It is best known for its treatment of geome-
try, deducing theorems from axioms in a style that became standard for
mathematics until the nineteenth century. ¿en the discovery of non-
Euclidean geometry put Euclid’s geometry under themicroscope, and by
the late nineteenth century his axiomswere found to have some gaps. But
this only strengthened the movement towards axiomatization. ¿e gaps
in Euclid were �lled by Hilbert () and, in the meantime, axiomatic
treatments of number theory and algebrawere given byDedekind, Peano,
and others.

Euclid also gave a deductive treatment of numbers in the Elements,
but it was complicated by the Greek discovery of irrationality, which was
thought to disqualify some geometric quantities (such as the diagonalº
 of the unit square) from being numbers at all. Irrational quantities

were not fully reconciled with whole or rational numbers until the pub-
lication of the Dedekind () book on irrational numbers. Dedekind
found that Euclid had been on the right track—the only new idea needed
to make his theory of irrational quantities part of his theory of numbers
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was acceptance of in�nite sets of rational numbers (see section .).
¿e two main threads of the Elements, geometry and the real num-

bers, were combined in the Grundlagen der Geometrie (foundations of
geometry) of Hilbert (). Here, Hilbert not only �lled the gaps in Eu-
clid’s geometric axioms, he also introduced two axioms that complete a
geometric path to the real number systemR.¿is was a historic achieve-
ment, thoughHilbert’s path is not the best for all mathematical purposes.
¿e arithmetization path to real numbers via the rational numbers ulti-
mately proved more useful for analysis, and we will take it up again in
chapter .

Hilbert () found that Euclid’s geometry and the arithmetic of real
numbers follow from  axioms, described below. All but two of them
are purely geometric. ¿e exceptions are the Archimedean axiom, which
says no line segment is “in�nitely large” compared with another, and the
completeness axiom, which says there are no “gaps” in the points on a
line. (¿ese two axioms were not needed by Euclid, who considered only
points constructible by ruler and compass.)¿eir purpose is to prove that
any line satisfying the axioms is essentially the line R of real numbers. It
follows that any plane satisfying the axioms is essentially the plane of
Descartes, so Euclid’s geometry has really only one model—the plane of
pairs of real numbers.

¿is very satisfying convergence of the geometric and arithmetic view-
points comes about becauseHilbert’s geometric axioms yield not just Eu-
clid’s geometric theorems—they also yield algebra, which Euclid did not
foresee. In fact, algebraic structure arises in stages corresponding to ax-
iom groups, which Hilbert introduces one by one.

Axioms of incidence.¿ese relate lines and points.¿ey include Euclid’s
axiom that two points determine a line, and a form of the parallel axiom:
for any line l and point P ~> l there is exactly one line m through P not
meeting l. Also (which went without saying in Euclid) each line has at
least two points, and there are three points not in a line.

Axioms of order.¿e �rst three of these axioms say the obvious things
about the order of three points on a line: if B is between A and C then
it is also between C and A; any A and C have a point B between them;
for any three points, one is between the other two. ¿e fourth, called
Pasch’s axiom, is about the plane: a line meeting one side of a triangle at
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an internal point meets exactly one of the other sides.

Axioms of congruence.¿e �rst �ve of these axioms are about equality
of line segments or angles, and the addition of line segments. ¿ey state
the existence and uniqueness of line segments or angles equal to given
ones, at a given position. ¿ey also say (as Euclid put it) “things equal to
the same thing are equal to each other.”¿e last congruence axiom is the
SAS criterion for congruence of triangles.

Circle intersection axiom. Two circles meet if one of them contains
points both inside and outside the other. (Euclid overlooked this axiom,
even though he assumed it in his very �rst proposition, constructing an
equilateral triangle.) Note that the points “inside” a circle of radius r are
those at distance < r from its center.

Archimedean axiom. For any nonzero line segments AB and CD there
is a natural number n such that n copies of AB are together greater than
CD.

Completeness axiom. Suppose the points of a line l are divided into two
nonempty subsetsA andB such that no point ofA is between two points
ofB and no point ofB is between two points ofA.¿en there is a unique
point P, in eitherA orB, that lies between any other two points, of which
one is inA and the other is in B. (¿us, there is no “gap” betweenA and
B.)

¿ese axioms give precise meaning to the idea of a theorem being
equivalent to the parallel axiom: namely, the equivalence is provable in
the base theory ofHilbert’s axiomsminus the parallel axiom.All theorems
previously thought to be equivalent to the parallel axiom (such as those
mentioned in section .) are equivalent to it in this sense. As suggested
at the end of section ., proving equivalences in a weaker system is the
hallmark of reverse mathematics. We will see further historical examples
in the later sections of this chapter. Today, the idea has been most fully
developed in systems of analysis, and we will see some its main results in
chapters  and .
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Algebraic Content of Hilbert’s Axioms

¿e incidence axioms allow us to de�ne sum and product of points on a
line by means of the constructions shown in �gures . and ..

¿e sum construction chooses a point  on the line then, for any
points a and b on the line, constructs a point a + b with the help of the
parallels shown. In e�ect, the parallels allow the point b to be “translated”
along the line by the distance between  and a.

 a b a + b
Figure . : Adding points on a line

¿eproduct construction also requires a point  on the line (the “unit
of length”), and various parallels now allow us to “magnify” the distance
from  to b by the distance from  to a, producing the point ab.

  a b ab

Figure . : Multiplying points on a line

With the help of the congruence axioms one can prove that the sum
and product operations just de�ned have the following algebraic prop-
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erties, the �eld properties (also used as the axioms that de�ne a �eld):

a + b = b + a a ċ b = b ċ a (commutativity)
a + (b + c) = (a + b) + c a ċ (b ċ c) = (a ċ b) ċ c

(associativity)

a +  = a a ċ  = a (identity)
a + (−a) =  a ċ a− =  for a x  (inverse)

a ċ (b + c) = a ċ b + a ċ c (distributivity)

It is easiest to deduce the �eld properties from the congruence ax-
ioms, but there is in fact a pure incidence axiom—the so-called Pappus
theorem—from which all the �eld properties follow with the help of the
other incidence axioms.4¿us the algebraic structure of a �eld emerges
from axioms that Euclid almost completely overlooked: the incidence ax-
ioms describing how points and lines interact.

¿e order axioms give the points on a line an ordering, B, with the
properties that, for any a,b, c:

• a B a,
• if a x b then either a < b or b < a, but not both,
• if a B b and b B c then a B c.

¿e order relationmeshes with the �eld properties to produce an ordered
�eld. Its de�ning properties, beyond the �eld properties above, are that:

• if a B b then a + c B b + c,
• if  B a and  B b then  B ab.

Finally, the Archimedean and completeness axioms say that the or-
der relation isArchimedean and complete in the sense described by those
axioms. It can be proved that a complete Archimedean ordered �eld is iso-
morphic to the �eld R of real numbers. Given such a �eld F, the idea of
the proof is to build a copy ofR insideF in the following stages. (Readers
not yet familiar with the construction of the real numbers as Dedekind
cuts may wish to take these steps on faith and con�rm them later when
reading chapter .)

4Incidentally, the �eld properties can be proved in the setting of projective geometry,
where all axioms are incidence axioms and the parallel axiom is replaced by the axiom
that any two lines meet in a unique point. ¿e above constructions can be carried out in
this setting when we call one line a “line at in�nity” and call lines “parallel” when they
meet on the line at in�nity.
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. From the element  > F build the “positive integers” of F, namely

,  + ,  +  + ,  +  +  + , . . . ,

using the + operation of F.
. Build “integers” of F using  and the − operation.
. Build “rational numbers” of F using inverse and product opera-
tions.

. Use the order and completeness properties ofF to build “real num-
bers” of F as Dedekind cuts in the “rational numbers” of F.

. Check that the “real numbers” of F exhaust the members of F and
have the same properties as the actual real numbers.

¿is proof shows that any complete Archimedean ordered �eld is es-
sentially the “same” asR, so every line in Hilbert’s geometry is essentially
the real number line.¿e next question is: howwell dowe understandR?

. WELL-ORDERING AND THE AXIOMOF CHOICE

In Book V of the Elements, Euclid gave a very sophisticated treatment
of the geometric line and its relationship to the rational numbers. He
stopped short of declaring irrational points to be numbers, but he es-
sentially showed that each point is approximated arbitrarily closely by
rational numbers. ¿is means that each point is determined by rational
numbers (those to the le of the point, for example), so we need only ac-
cept in�nite sets as mathematical objects in order to view points as arith-
metical objects.

However, until themid-nineteenth century, most mathematicians re-
jected the idea of in�nite sets as mathematical objects. ¿ey were in-
�uenced by the ancient Greek distinction between “potential” and “ac-
tual” in�nity. For example, it was permissible to view the natural num-
bers as an open-ended process—start with  and keep adding —but not
as a completed or “actual” entity N = �, ,, . . .�. Today, this seems a
rather hair-splitting distinction, because—as far as anyone knew in the
mid-nineteenth century—all in�nite sets could be viewed as “potential”
in�nities.

For example, the integers, Z, can be viewed as a potential in�nity by
listing them in the order

, , −, , −, , −, . . . .
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¿e positive rationals can likewise be viewed as a potential in�nity by
listing them in the order



,



,



,



,



,



,



,



,



, . . . .

(¿e rule is to list fractions m~n in order of the sums m + n: �rst those
withm+n = , then those withm+n = , then those withm+n = , and
so on.) And then we can view all the rationals, Q, as a potential in�nity
by listing positive and negative elements alternately as we did with Z:

,


, − 


,



, −


,



, − 


,



, −


,



, − 


, . . . .

¿us N, Z, and Q, which we now regard as sets, could all be �nessed as
“potential” in�nities by mathematicians who were fastidious about the
distinction between potential and actual.

A much more serious problem arose in , when Cantor showed
that R is not by any means a potential in�nity.

Uncountability

¿e means by which we showed the sets N, Z, and Q to be potential
in�nities was by counting, or ordering their members in a sequence:

st member, nd member, rd member, . . .

—with an implied process for countingmembers that reaches eachmem-
ber at some �nite stage. Cantor () showed that R is uncountable in
the sense that no such ordering of R exists.

He showed that any sequence x,x,x, . . . of real numbers fails to
include some real number x. In fact, given the decimal expansions of
x,x,x, . . . we can compute the decimal expansion of x. For example,
we can use the rule:

nth decimal digit of x =
¢̈̈
¦̈
¤̈

 if nth decimal digit of xn x 
 if nth decimal digit of xn = .

¿en x x each xn because x di�ers from xn in the nth decimal place.
¿us if we acceptRwe have to accept it as an actual in�nity.¿e proof

given here is essentially one given by Cantor (). It is, incidentally, a
harbinger of many proofs about R that we will see later in this book.
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Given an arbitrary object, such as a sequence or a function, we prove
existence of some other object by computing it from the given object.¿e
computation of one object relative to others is seldomnoticed in classical
analysis—in fact, manymathematicians have thought that Cantor’s proof
is nonconstructive—but it is important, as we will see in later chapters.

Well-ordering

Cantor’s theorem shows thatR cannot be ordered in the simple way that
N, Z, and Q can: st member, nd member, rd member, . . . . Neverthe-
less Cantor () stated his belief in a more general kind of order:

In a later article I shall discuss the law of thought that says that it
is always possible to bring any well-de�ned set into the form of a
well-ordered set—a law which seems to me fundamental and mo-
mentous and quite astonishing. (Ewald (), vol. II, p. )

Cantor called a set S well-ordered if the ordering is such that every non-
empty subset T of S has a least member. ¿is is clearly the case for the
orderings of N, Z, and Q above, where each member is labeled with a
positive integer (take the member of T whose integer is least). It is also
the case for the following ordering of Z,

, , , , . . . , −, −, −, −, . . . ,

in which  and the positive integers precede all the negative integers. If
T is a nonempty subset of Z then the least member of T in the above
ordering is

the least non-negative integer in T, if T has any non-negative members,
or

the greatest negative integer in T, if T has only negative members.

When it comes toR, however, all human ingenuity fails to �nd a well-
ordering of the real numbers.¿e usual ordering < fails dismally, because
subsets such as �x > R �  < x� have no least member. ¿us Cantor was
very bold to assume that well-orderings exist for all “well-de�ned” sets—
which surely include R.

¿eWell-ordering¿eorem and Zermelo’s Axioms

Cantor perhaps thought that his “fundamental law of thought” should
be an axiom of set theory. But he did not suggest a set of axioms for set
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theory, so it remained unclear whether well-ordering should be an axiom
or a theorem. ¿e picture became clearer when Zermelo () proved
well-ordering from an intuitively simpler assumption, now known as the
axiom of choice.

Axiom of choice (AC). For any set X of nonempty sets x there is a choice
function; that is, a function f such that f(x) > x for each x > X.

To provide a precise framework for his proof (and at the same time
to clear up some doubts about the foundations of set theory) Zermelo
() gave the �rst set of axioms for set theory. Within his system, now
calledZ, it was possible to prove thatAC is equivalent to thewell-ordering
theorem. Fraenkel () strengthened one of Zermelo’s axioms, obtain-
ing a system now known as ZF set theory.

¿e ZF axioms of set theory have remained stable since  and
have become generally accepted as a foundation for all of mainstream
mathematics, at least when supplemented by AC. Indeed, it was proved
in ZF that AC is equivalent to many sought-a er theorems, including
the well-ordering theorem, that were apparently not provable outright
in ZF.

¿is put AC in a position, relative to ZF, like that of the parallel axiom
relative to the other axioms of Euclid (or, more precisely, relative to the
other axioms of Hilbert). ¿eorems proved equivalent to AC in ZF were
not of clear interest until it was known that AC is not provable in ZF.¿is
was done byCohen (). As Beltrami in  did for the parallel axiom,
Cohen showed the unprovability of AC by constructing amodel of ZF in
which AC is false. His construction, like Beltrami’s, was a breakthrough
that completely changed the face of the subject. It is unfortunately too
technical to be described in this book, but we can describe some of its
consequences.

AMathematical Equivalent of the Axiom of Choice

Like the parallel axiom in geometry, AC in set theory occupies an im-
portant position “above” the basic (ZF) axioms. ZF cannot prove AC,
but ZF is a good base theory because it can prove that AC is equivalent
to many other interesting statements of set theory and general mathe-
matics. In this sense, AC is the “right axiom” to prove these statements.
As we know, one such statement is the well-ordering theorem. Another
is the following property of vector spaces over an arbitrary �eld F. (We



HISTORICAL INTRODUCTION ■ 

de�ned a real vector space in section .. ¿e de�nition of an arbitrary
vector space is the same, except with F in place of R.)

Existence of a vector space basis. Any vector space V has a basis; that is,
a subset U of vectors u such that:

(i) For any v > V there are u, . . . ,uk > U and f, . . . , fk > F such that
v = fu +� + fkuk. (“U spans V.”)

(ii) For any distinct u, . . . ,uk > U and f, . . . , fk > F,  = fu +� +
fkuk if and only if f = � = fk = . (“U is an independent set.”)

¿e existence of a basis is clear for �nite-dimensional real vector
spaces, where we can take the basis vectors u to be the unit points on the
coordinate axes. ¿e �rst case in which a basis is hard to �nd—in fact
utterly mysterious—is whenR is viewed as a vector space overQ. Hamel
() showed existence of a basis with the help of a well-ordering of R,
but the so-called Hamel basis is no easier to de�ne than a well-ordering
of R itself.

¿us it is no surprise that all proofs of the existence of a basis for an
arbitrary vector space depend on AC.We now know that AC is unavoid-
able because Blass () showed that existence of such a basis can be
proved equivalent to AC in ZF.

. LOGIC AND COMPUTABILITY

¿eprevious sections of this chapter suggest that the real number system
R is an essential part of the foundations of mathematics. When we turn
to analysis, in the next chapter, the unavoidability ofRwill become even
more obvious. At the same time, we have seen that our understanding of
R can never be complete, if only because of the uncountability of R.

Since we cannot list all real numbers we certainly cannot list all facts
about real numbers, let alone set up an axiom system for proving them.
¿is observation is the �rst step on the road towards the profound theo-
rems of Gödel () and Turing () about unprovable theorems and
unsolvable algorithmic problems—a road we will describe inmore detail
in chapter .

Gödel’s theorem rules out any possibility of a complete axiom system
for analysis. Yet it also presents an opportunity. If we are lucky wemay be
able to �nd a base theory for analysis, in which we can prove that sought-
a er theorems are equivalent to certain axioms—axioms that play a role,
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like that of the parallel axiom in geometry or AC in set theory, of attract-
ing desirable theorems into their “orbit” of equivalent theorems.

¿is indeed is what happens.We now know a good base theory, called
RCA, and at least four set existence axioms that play this role for the-
orems of analysis. Moreover, the axioms are of increasing strength, in
the sense that each implies the one before, so they classify theorems of
analysis by increasing strength. ¿e crucial axioms state “set existence”
rather than “real number existence” because it is technically convenient
to encode real numbers by sets of natural numbers (see next chapter for
details). ¿e axioms in question state there is a set of natural numbers n
corresponding to each property φ(n) in a certain class.

For RCA we assert set existence for the class of computable proper-
ties φ(n). ¿ese are the properties for which there is an algorithm that
decides, for each n, whetherφ(n)holds. It turns out, becausenoncompu-
table properties exist, that RCA is too weak to prove many important
theorems of analysis. But RCA can provemany equivalences, since these
o en involve computing an object (such as a sequence or a function)
from a given object. For example, RCA cannot prove the Bolzano-
Weierstrass theorem, but it can prove that Bolzano-Weierstrass is equiva-
lent to an axiom stating the existence of sets realizing each arithmetically
de�nable property φ(n). ¿us, if we add the latter axiom to RCA, we
obtain a stronger system in which Bolzano-Weierstrass is provable.

In this way we �nd, rather surprisingly, that most of the well-known
theorems of analysis can be assigned a precise level of “strength.” ¿ey
are either at the lowest level—provable in RCA—or at a higher level
represented by one of four set existence axioms. In this book we focus
mainly on the lower three levels, wheremost of thewell-known theorems
of analysis are known to reside (see chapters  and ).

Arithmetization

From the discussion abovewe can see that a study of arithmetic and com-
putation will be needed before we can de�ne the system RCA. Arith-
metic itself is axiomatized in a fairly standard way that goes back to the
Peano axioms of Peano (). But before that we have to talk about
arithmetization—both in the nineteenth-century sense of making anal-
ysis “arithmetical,” and in the s sense of making logic and computa-
tion “arithmetical.”
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¿e remarkable convergence of analysis and computation to a com-
mon source in arithmetic is whatmakes the reversemathematics of anal-
ysis possible. ¿e arithmetization of analysis is discussed in chapter ,
computation is discussed in chapter , and its arithmetization in chapter
. We also give a refresher course on the real numbers and continuity in
chapter , including classical proofs of the best-known theorems.
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Classical Arithmetization

At the International Congress of Mathematicians in Paris in , Henri
Poincaré summed up the situation in the foundations of analysis as fol-
lows:

Today in analysis there remain only natural numbers or �nite or
in�nite systems of natural numbers . . .Mathematics, as one says,
has been arithmetized. (Poincaré (), p. )

Poincaré was speaking at the end of a century of progress and upheaval in
mathematics. Aswe know fromchapter , the nineteenth century brought
to light new geometries, new algebras, new concepts of number and func-
tion, and new in�nities—for which the traditional foundation of mathe-
matics, in Euclid, was clearly inadequate.

In the hope of building a secure foundation for the vast new edi�ce of
mathematics,mathematicians turned to the systemN of natural numbers
, ,,, . . . . From them (and from sets of them) they rebuilt the real and
complex numbers, functions, and the geometric objects that were then
the main concern of mathematicians. ¿is was the project of arithmeti-
zation.

In this chapter we describe how one proceeds from natural to ra-
tional numbers, then to real and complex numbers, and to continuous
functions—thus arithmetizing the foundations of analysis and geome-
try. ¿en we turn to the foundations of the natural numbers themselves,
the Peano axioms, which gives a �rst glimpse of the logic underlying the
arithmetization project.
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. FROMNATURAL TO RATIONAL NUMBERS

Integers

We assume for the moment that the natural numbers , ,,, . . . and
their operations of plus (+) and times (ċ) are given (section . explains
further). From them we create the system Z of integers as ordered pairs
`m,ne of natural numbers m,n, where the intended interpretation of
`m,ne ism−n. ¿is means that the negative integer − is represented by
in�nitely many pairs:

− = `, e = `,e = `,e = `,e = � ,

however, we can tell when two pairs represent the same integer by a test
involving only natural numbers and addition, namely:

`m,ne = `m,ne� m + n = m + n.

¿e creation of negative numbers from pairs of natural numbers is not
simply a puremathematical abstraction.¿e same idea has been used for
centuries in double entry bookkeeping, where an account balance (which
may be negative) is expressed by a pair of positive numbers, the amounts
of credit and debit. ¿is idea goes back to Pacioli (), and its role in
the history of negative numbers is described in Ellerman ().

It is also easy, with the intended interpretation in mind, to extend the
+ and ċ functions from natural numbers to the integers. Namely,

`m,ne ċ `m,ne = `mm + nn,mn +mne.

Notice that this de�nition answers the vexed question of what (−) ċ(−)
is, because − is represented by the pair `, e and

`, e ċ `, e = ` ċ  +  ċ , ċ  +  ċ e = `,e,

which represents the number .
And of course (because this is the purpose of negative integers) we

now have the subtraction operation de�ned for all integers:

`m,ne − `m,ne = `m + n,m + ne.

¿ere are a couple of tedious, but straightforward, things to check.
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. ¿at +, −, and ċ are well de�ned; that is, independent of the choice
of representatives.

. ¿at+,−, and ċ have the desired algebraic properties—the so-called
ring axioms—which are the following (where −a stands for  − a).

a + b = b + a a ċ b = b ċ a (commutativity)
a + (b + c) = (a + b) + c a ċ (b ċ c) = (a ċ b) ċ c

(associativity)

a +  = a a ċ  = a (identity)
a + (−a) =  (inverse)

a ċ (b + c) = a ċ b + a ċ c (distributivity)

¿ese depend on related properties of the natural numbers, dis-
cussed further in section ..

Rational Numbers

From the integers we create the systemQ of rational numbers as ordered
pairs `i, je of integers, where jx . ¿e intended interpretation of `i, je
is i~j, so again there are in�nitely many representations of each rational
number—but of course we are used to the fact that each rational number
is expressed by in�nitely many fractions, di�ering only by a common
factor in i and j.

We are also used to the rule for multiplying fractions,

`i, je ċ `i, je = `ii, j je,
and the rule for adding them by taking the “common denominator” j j:

`i, je + `i, je = `i j + i j, j je.
¿e latter rule—anotorious stumbling block in elementarymathematics—
can be better appreciated when one tests the claim that + is well-de�ned
for rational numbers. Since

`i, je = `mi,mje for any integerm x ,
`i, je = `ni,nje for any integer n x ,

their sum is
`minj + nimj,mjnje.

¿e latter expression is indeed independent of m and n, because of the
common factormn in both members of the pair.
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Algebraic Properties

¿e de�nitions of integers and rational numbers above show why ques-
tions about them can, in principle, be reduced to questions about natural
numbers and their addition and multiplication. ¿is is what it means to
say that the natural numbers are a foundation for the integer and rational
numbers.

In practice, of course, we prefer to work with integer or rational num-
bers. ¿ey admit not just addition and multiplication, but also subtrac-
tion and division, and their rules for calculation are simpler. We could
say that the rational numbers have better algebraic properties than the
natural numbers. ¿ese are the �eld properties—already mentioned in
the geometric context of section .—which are the above ring proper-
ties plus themultiplicative inverse property: a ċ a− =  when a x . Nev-
ertheless, the rules for calculating with rational numbers can be traced
back to the natural numbers, as we will see in section ..

¿e next steps in the arithmetization project go beyond algebra. By
admitting sets of rational numbers we can enlarge the number system to
one that admits certain in�nite operations, such as forming in�nite sums.
¿is is crucial to building a foundation for analysis.

. FROM RATIONALS TO REALS

Since the time of Pythagoras it has been known that rational points do
not �ll the line.¿ey donot include the point

º
, for example. To �ll gaps

in the line, mathematicians have devised various in�nite processes that
create new points, such as in�nite sums, in�nite decimals, and in�nite
continued fractions. But themost direct way to �ll the gaps in the rational
numbers is one that stems from an idea of Dedekind (): �ll each gap
by the gap itself!

We can view each gap (or cut as Dedekind called it) in the set Q of
rational numbers as a division of Q into two disjoint subsets, L and U
(“lower” and “upper”), where L has no greatest member, U has no least
member, and eachmember of L is less than all members ofU.¿us gaps,
too, are in�nite objects, but they are the objects most suitable for com-
pleting the number line.¿ere isQ, and there are gaps inQ, and together
they �ll the line.
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¿ismay seem at �rst like a trick, a play on words, but the trick works
extremely well. It not only completes the setQ of rational numbers to the
gapless set R of real numbers, but also ensures that R is a �eld, because
the �eld properties are directly inherited from Q. ¿is becomes clear if
we extend the concept of Dedekind cut to include rational numbers as
well, by dropping the condition that L have no greatest member. Indeed,
each real number can be represented by a lower set L alone, which we
will call a lower Dedekind cut:

De�nition.A real number is a set L of rational numbers that is bounded
above and “closed downward”: that is, if s > L and rational t < s then
t > L.

We illustrate how R inherits the �eld properties from Q in the case
of addition.

De�nition. If L and L are real numbers, their sum L+L is de�ned by

L + L = �s + s � s > L and s > L�.

From this de�nition the commutative, associative, identity, and in-
verse laws for addition follow immediately. For example, here is why as-
sociativity holds:

L + (L + L) = �s + (s + s) � s > L and s > L and s > L�
(by de�nition of sum)

= �(s + s) + s � s > L and s > L and s > L�
(by associativity in Q)

= (L + L) + L (by de�nition of sum)

¿e de�nition of product is a little more tricky, since multiplying
numbers in the negative part of a cut will produce arbitrarily large posi-
tive rationals, so the resulting set is not a lower Dedekind cut. One way
around this problem is to de�ne positive reals via cuts in the positive ra-
tionals, and to de�ne their products �rst. ¿en treat arbitrary reals as
pairs of positive reals as we did when constructing integers from the ra-
tional numbers. It remains true that the �eld properties of multiplication
for reals follow immediately from those for rationals.

¿us the real numbers behave aswe expect “numbers” to behave.Now
let us see how well they behave under in�nite processes. First note that



CLASSICAL ARITHMETIZATION ■ 

R also inherits an ordering from Q, which is naturally de�ned in terms
of set containment.

De�nition.We say L < L if L ú L.
An immediate consequence of this de�nition is a principle that was

the main goal of Dedekind’s de�nition of real numbers:

Least upper bound principle. If X is any bounded set of real numbers
then X has a least upper bound.

Proof. Consider the lower Dedekind cuts L representing the numbers
x > X. Since X is bounded above, there is a rational number q greater
than any member of any L. It follows that the union L� of all the sets L is
itself a lower Dedekind cut, de�ning some number x�.

Clearly, each L b L�, so x B x� for each x > X. ¿at is, x� is an upper
bound of X. And x� is the least upper bound, because for any y < x� we
have y < some member of some L, and hence y < some x > X. j

¿e least upper bound principle was �rst stated by Bolzano (), be-
fore there was a de�nition of R precise enough to allow the principle to
be proved. In the next sectionwewill see that the least upper bound prin-
ciple underlies many properties ofR stating that a certain kind of in�nite
process is meaningful.¿ese properties re�ect the so-called completeness
of R.

A simple example is the in�nite decimal . . . . . We take this ex-
pression to mean the least upper bound of the sequence .,.,.,
., . . ., which exists by the least upper bound principle, and is nec-
essarily . It similarly follows that any in�nite decimal represents a well-
de�ned real number.

Complex Numbers

From the foundational point of view the complex numbers involve no
ideas beyond those used to constructR, so we will not study them in de-
tail. However, they are interesting historically as the �rst example where
numberswere de�ned as ordered pairs.Hamilton () de�ned the com-
plex numbers a + bi to be the ordered pairs `a,be of real numbers, and
he de�ned their sum and product by the rules

`a,be + `a,be = `a + a,b + be,
`a,be ċ `a,be = `aa − bb,ab + abe.
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¿e latter equation is motivated by the result

(a + bi)(a + bi) = aa − bb + (ab + ab)i,

obtained by assuming that complex numbersC have the �eld properties
and that i = −. With Hamilton’s de�nitions of sum and product the
�eld properties of the complex numbers are inherited from those of the
real numbers.

. COMPLETENESS PROPERTIES OF R

¿e least upper bound property concerns bounded, but otherwise arbi-
trary, sets of real numbers. In the basic analysis studied in this book we
are more likely to use bounded sequences of real numbers x,x,x, . . . .
Since the members of a sequence constitute a set, �x,x,x, . . .�, it is
also true that a bounded sequence of real numbers has a least upper
bound. Since this special case of the least upper bound principle is partic-
ularly important, we will name it: the sequential least upper bound prin-
ciple.

An evenmore special case is themonotone convergence theorem, stat-
ing that a boundednondecreasing (ornonincreasing) sequence has a limit.
We have not de�ned limit until now, but it is clear what the “limit” of a
bounded nondecreasing sequence should be: its least upper bound.

De�nition. A sequence x,x,x, . . . has limit l if, for each ε A , there
is a natural number N such that

n A N� Sxn − lS < ε.

We write this relation as limn�ª xn = l, or sometimes xn � l as n�ª,
and also say that a sequence is convergent if it has a limit.

With this de�nition it is clear that if x B x B x B � and if l is the
least upper bound of �x,x,x, . . .�, then also limn�ª xn = l.

¿ere is a similar story about greatest lower bounds and the limits of
nonincreasing sequences. ¿e greatest lower bound for any bounded set
S exists, since it is the negative of the least upper bound of �−s � s > S�,
and the limit of a bounded nonincreasing sequence is clearly equal to its
greatest lower bound.
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Nested Sequences of Closed Intervals

Boundedmonotonic sequences commonly occur in the setting of nested
sequences of closed intervals. A closed interval is a set of the form

[a,b] = �x > R � a B x B b�.

A sequence [a,b], [a,b], [a,b], . . . of intervals is called nested if

[a,b] c [a,b] c [a,b] c � .

Such sequences are implicit, for example, in in�nite decimals, such as

x = .� ,

which encapsulates a sequence of nested intervals which “narrow down
to” x, in the sense that x is the single common point of the nested se-
quence

[,] a [.,.] a [.,.] a [.,.] a [.,.] a � .

¿e existence of a common point for an arbitrary nested sequence

[a,b] c [a,b] c [a,b] c �

follows from the monotonicity of the sequences

a B a B a B � , which has least upper bound a, say, and
b B b B b B � , which has least upper bound b, say.

Since an B a B b B bn for each n, a and b belong to all the intervals
[an,bn].

If, in addition, the intervals [an,bn] become arbitrarily small then we
cannot have a < b (because the intervals eventually have length < b− a).
So in this case the nested intervals have exactly one common point. (¿is is
so in the case of in�nite decimals, because the length of the nth interval
is −n.)

We may call this property of R nested interval completeness.

¿e Cauchy Convergence Criterion

Being bounded and monotonic is a criterion for convergence of a se-
quence that does not require any mention of the limit of the sequence.
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But monotonic sequences are very special. ¿ere is in fact a completely
general convergence criterion that does not mention the limit, namely,
the criterion of Cauchy (), chapter :

Cauchy convergence criterion. A sequence x,x,x, . . . is convergent if
and only if, for each ε A , there is an N such that

m,n A N� Sxm − xnS < ε.

Proof. If x,x,x, . . . is convergent, then it has a limit l and it follows
from the de�nition of limit that, for each ε A , there is an N such that

n A N� Sxn − lS < ε~.

It follows in particular that

m,n A N� Sxm−xnS = Sxm−l−(xn−l)S B Sxm−lS+Sxn−lS < ε~+ε~ = ε,

as required.
Conversely, if x,x,x, . . . satis�es the Cauchy convergence criterion

then the sequence is bounded, because the �nite sequence x,x, . . . ,xN
is bounded and the terms therea er di�er from xN by at most ε. ¿en if
we let

an = greatest lower bound of �xn,xn+,xn+, . . .�,
bn = least upper bound of �xn,xn+,xn+, . . .�,

we have nested intervals

[a,b] c [a,b] c [a,b] c � ,

which become arbitrarily small by the Cauchy criterion, and hence con-
tain a single common point, l. It follows that, for any ε A , there is an N
such that

n A N� Sxn − lS < ε,

and hence x,x,x, . . . converges to l. j

¿is theorem gives another common way to express completeness of
R: every sequence satisfying the Cauchy criterion has a limit.
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. FUNCTIONS AND SETS

We have now seen how integer and rational numbers reduce to natural
numbers, and how real numbers reduce to sets of rational numbers (and
hence to sets of natural numbers). ¿e next objects to arithmetize are
functions. In fact we have already considered certain kinds of functions.

¿e sequence x,x,x, . . . is a function f on the natural numbers
with real number values, namely

f(n) = xn.

¿is function can in turn be viewed as the set of ordered pairs

f = �`, f()e, `, f()e, `, f()e, . . .�.

Indeed, any function f with domain D can be viewed as the set

�`x, ye � x > D and f(x) = y�.

¿is shows how functions may be reduced to sets, but it also adds to
the plethora of ordered pairs we have already used to de�ne integers
and rational numbers. To achieve the ultimate goal of arithmetization—
reducing all concepts of analysis to natural numbers and sets of natural
numbers—we need a way to encode pairs of numbers by numbers.

Pairing Functions

A function that maps distinct ordered pairs of numbers to distinct num-
bers is called a pairing function. We begin by discussing the most impor-
tant example: pairing functions on the set N of natural numbers. Figure
. shows an arrangement of the setN�N of ordered pairs `m,ne of nat-
ural numbers that makes it clear that a pairing function exists. In fact it
shows a bijection between N �N and N.

If we order the diagonals in N � N from le to right and pairs along
each diagonal from top to bottom, as shown, then `m,ne is themth ele-
ment on the (m + n)th diagonal, so it occurs at position

m + ( +  +  +� + (m + n)) = m + (m + n)(m + n + )


.

For example, `,e is at position  and `,e at position + �
 = + = .
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Figure . : Listing the ordered pairs of natural numbers

¿us the function

P(m,n) = m + (m + n)(m + n + )


is a pairing function forN�N.¿is pairing function is algebraically sim-
ple,1 hence easily handled in the formal language of Peano arithmetic we
introduce in section ..

Using it, we can encode integers and rationals by natural numbers,
and hence we can encode sets of rationals (and thereby real numbers)
by sets of natural numbers. ¿us we begin to see how analysis can be
arithmetized, though there is reason to doubt that arithmetization can
give a good account of sets of real numbers, as we will see in section ..
However, we can handle sequences of real numbers.

Encoding Sequences and Certain Other Functions

Given that each real xn can be encoded by a set Xn b N, we can encode
the sequence �`n,xne � n > N� by the set of pairs

�`n, ke � k > Xn and n > N�,

and hence by the set of natural numbers

X = �P(n, k) � k > Xn and n > N�.
1¿is function is essentially due toCantor (), §, who introduced the correspond-

ing function for positive integers. Surprisingly, it is the only known quadratic bijection
from N�N to N, apart from the one obtained by exchangingm and n. Pólya and Fueter
() proved that P(m,n) and P(n,m) are the only quadratic bijections that map `,e
to . I learned this from the book Smoryński (), p. .
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¿us a sequence of real numbers can be encoded by a setX b N because it
is a functionwith domainN.¿e same ideaworks for any functionwhose
domain can be encoded by N, such as a function with domain Q. In the
next section we will see that this fact allows us to encode any continuous
function on the real numbers by a set of natural numbers.

. CONTINUOUS FUNCTIONS

¿estandardway to de�ne continuous real functions, which goes back to
Cauchy (), is as follows. It formalizes the idea that f(x) “approaches”
f(a) as x “approaches” a.

De�nitions.A real-valued function f is called continuous at a > R if, for
each ε A , there is a δ A  such that

Sx − aS < δ� Sf(x) − f(a)S < ε.

¿e function f is continuous on a set S b R if f is continuous at each
a > S.

A consequence of this de�nition is that a continuous function be-
haves in the expected way on convergent sequences.

Sequential continuity. If f is continuous at x = a and de�ned at points
a,a,a, . . . with limn�ª an = a, then f(a) = limn�ª f(an).

Proof. By de�nition of continuity, for each ε A  there is a δ A  such that

Sx − aS < δ� Sf(x) − f(a)S < ε.

Also, since limn�ª an = a, for each δ A  there is an N such that

n A N� San − aS < δ
� Sf(an) − f(a)S < ε by continuity at x = a.

And this says limn�ª f(an) = f(a) j

Now, since each real number a is (by the de�nition in section .)
the least upper bound of a set L of rational numbers, it is the limit of a
sequence a,a,a, . . . of rational numbers. (Obtained, for example, by
choosing each an from L at distance less than ~n from a.) ¿erefore,
each function f continuous at a and de�ned within some radius δ of a is
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de�ned on some sequence of rational numbers a,a,a, . . . with limit
a. ¿us it follows from sequential continuity that

f(a) = lim
n�ª

f(an).

In other words, each value f(a) of f is determined by the values of f at
rational points.

It follows, by the remark at the end of the previous section, that each
continuous function onR (or on an interval ofR) may be encoded by a set
of natural numbers, and hence that the arithmetization project extends
at least as far as the continuous functions. ¿is remarkable result is due
to Borel (), p. , and it follows that each continuous function may
be encoded by a real number. Is it not surprising that each continuous
function, no matter how complicated, can be captured by a point on the
number line?

Encoding Continuous Functions by Rational Intervals

¿ere is a more direct way to de�ne continuous functions, introduced by
Hausdor� (), which leads to rather more natural encoding of them.

De�nitions. An open interval of R is a set of the form

(a,b) = �x > R � a < x < b�.

An open set (in R) is an arbitrary union of open intervals.

¿e characteristic property of an open setU is that any x > U is “prop-
erly inside” U in the sense that, for some δ A , all points within dis-
tance δ of x are also in U. ¿is leads to Hausdor� ’s characterization of
continuous functions, in which we use the notation f((c,d)) to denote
�f(x) � x > (c,d)�.

Hausdor� characterization of continuity. A real-valued function f on
an open set U is continuous if and only if, for each value f(x) and each
(a,b) including f(x), there is an open interval (c,d) including x such that
f((c,d)) b (a,b).

Proof. Since f is continuous, for each x > U and each ε A  there is a
δ A  such that

Sx − x′S < δ� Sf(x) − f(x′)S < ε.
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In particular, if f(x) > (a,b) and ε = min(f(x) − a,b − f(x)) there is
a δ A  such that f(x′) > (a,b) for x′ > (x − δ,x + δ) b U. So if we set
(x − δ,x + δ) = (c,d) we have

f((c,d)) b (a,b).

Conversely, if for each (a,b) including f(x) there is a (c,d) includ-
ing xwith f((c,d)) b (a,b) then, for each ε A , there is (c,d) including
x with f((c,d)) b (f(x) − ε, f(x) + ε).

Consequently, if δ = min(x − c,d − x) we have

Sx − x′S < δ� Sf(x) − f(x′)S < ε,

so f is continuous at x for each x > U, and hence f is continuous on U.
j

It follows from the Hausdor� characterization that we can encode
any f continuous on an open set U by the pairs of rational intervals
`(a,b),(c,d)e such that f((c,d)) b (a,b). ¿is is because x and f(x)
are determined by the rational intervals containing them, and if f((c,d))
is contained in a rational interval (a,b) we can ensure that (c,d) is also
rational, by making it slightly smaller, if necessary.

By suitable use of pairing functions we can encode the set of ordered
pairs `(a,b),(c,d)e, and hence the function f itself, by a set of natural
numbers.¿uswe recover the result found in the �rst part of this section.

. THE PEANO AXIOMS

In the preceding sections of this chapter we have outlined how the basic
concepts of analysis, from the real numbers to continuous functions,may
be derived from the natural numbers and sets of natural numbers. Now
it is time to lay the foundations of the natural numbers themselves, and
their accompanying operations of addition and multiplication.

¿e bedrock concept of this foundation is induction, �rst recognized
by Grassmann () as the basis for de�ning addition and multiplica-
tion, and for proving their algebraic properties such as a + b = b + a.
Grassmann’s ideas were encapsulated in an axiom system for the natu-
ral numbers by Peano (), and this system is now known as Peano
arithmetic (PA).

Over the years, the statement of the Peano axioms has varied slightly.
In Peano’s original system,  was taken as the least number; we take  to
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be least.¿ere is also some variation in the induction axiom. It was orig-
inally stated as property of arbitrary sets of natural numbers but we now
restrict it to properties de�nable in the language of PA, as explained be-
low. One reason for the restriction is that we wish to separate the concept
of set of natural numbers from the concept of natural number, so we no
longer include the concept of set in the axioms of PA.

¿e proper place for axioms about sets is in axiom systems for anal-
ysis, as we will see at length in chapters  and .

Axioms for Successor

¿e �rst two Peano axioms express our intuition that the natural num-
bers are generated from  by applying the successor function S:

. For all n,  x S(n).
. For allm and n, S(m) x S(n)� m x n.

From these, we deduce xS(), then S()xSS(), SS()xSSS(), and
so on. In this way we can prove that

, S(), SS(), SSS(), �

(the terms denoting the natural numbers) are all di�erent from each
other.

Axioms for Sum and Product

¿e next two axioms implicitly de�ne the functions + and ċ by induction
(also called “de�nition by recursion” or “recursive de�nition”).

. For allm and n,m +  = m andm + S(n) = S(m + n).
. For allm and n,m ċ  =  andm ċ S(n) = m ċ n +m.

¿ese axioms de�ne + and ċ for all the terms ,S(),SS(),SSS(), . . .
that we interpret as the natural numbers. Axiom  de�nesm+k for allm
and for k = ; then it de�nesm+ k for k = S(n), provided thatm+n has
already been de�ned. In fact from Axiom  we can prove all particular
facts about sums of natural numbers, such as

SS() + SS() = SSSS()

(the equation we normally write as  +  = ).
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However, we are not yet able to prove general facts about addition,
such as a + b = b + a for all a and b.

Axiom  de�nes m ċ k for all m and for k = ; then it de�nes m ċ k
for k = S(n), provided that m ċ n and the + function have already been
de�ned. For Axioms  and  we can prove all particular facts about sum
and product of natural numbers, such as

SS() ċ (S() + SSS()) = SSSSSSSS()

(the equation we normally write as ( + ) = ).
But, as before, we cannot prove general facts, such as a ċ (b + c) =

a ċ b + a ċ c for all a,b, and c. ¿ese facts do not follow from Axioms
–, as can be shown by concocting a model of Axioms – that includes
some alien objects (unequal to , S(), SS(), . . . ) with peculiar sums and
products.

Axioms – are a very concise way to encapsulate all particular facts
about sums and products of natural numbers—they cover something like
“elementary school arithmetic.” But to capture the “higher arithmetic” of
general facts about numbers we need to formalize the principle of induc-
tion that we used informally to see what follows from Axioms –. It is
induction that enables us to prove the algebraic properties underlying
the �eld properties of Q and R.

Induction

Induction is the principle that allows us to conclude that a property φ(n)
holds for all n once we have proved

• φ() holds (the “base step”);
• for all n, if φ(n) holds then φ(S(n)) holds (the “induction step”).

Using the symbol ∀n to denote “for all n” we express this principle by
the axiom

. [φ() and ∀n(φ(n)� φ(S(n)))]� ∀nφ(n).

Axiom  is known as the induction axiom or, more precisely, as the in-
duction axiom schema. It really consists of in�nitely many axioms, one
for each property φ that can bewritten in the language of arithmetic.¿is
language has variables for natural numbers, the function symbols S, +,
and ċ, the equality symbol =, parentheses, and logic symbols. ¿e latter
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are symbols for “and,” “or,” “not,” “implies,” “for all,” and “there exists.”
For more details, see the next section, which describes a classi�cation of
formulas in this language according to “quanti�er complexity.”

¿e induction axiom used by Peano is worth a brief mention here,
becausewewill eventually use it in the systemACA of analysis discussed
in chapter . We call it set variable induction because it involves a set
variable X and says n > X instead of φ(n), namely

[ > X and ∀n(n > X� S(n) > X)]� ∀n(n > X).

Examples of Proofs by Induction

Proving even a+ b = b+ a takes more space than we care to use here, so
we will give only two simpler examples in the same vein.

Successor is +. For all natural numbers n, S(n) = n + .

Proof.¿e number  is de�ned to be S(), so

n +  = n + S()
= S(n + ) by de�nition of +,
= S(n) since n +  = n by de�nition of +. j

Commutativity of adding . For all natural numbers n,  + n = n + .

Proof. Since S(n) = n+  by the previous proposition, it su�ces to prove
S(n) =  + n. We do this by induction on n.

For the base step n =  we have

S() =  =  +  by de�nition of +.

For the induction step we assume S(k) =  + k, so k +  =  + k, and
consider S(S(k)):

S(S(k)) = S(k + ) by the previous proposition,
= S( + k) by the induction hypothesis,
=  + S(k) by de�nition of +.

¿is completes the induction step, so S(n) = +n for all natural numbers
n. j
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By further use of induction one can obtainmore general results about
natural numbers, such as m + n = n + m, l + (m + n) = (l + m) + n,
mn = nm, and l(m + n) = lm + ln. ¿en, by introducing negative in-
tegers and rational numbers via ordered pairs as in section ., we can
prove all the ring properties of the integers and the �eld properties of the
rationals.¿is was �rst done byGrassmann (), and is quite laborious.
¿e property mn = nm is Grassmann’s theorem ! However, each step
is fairly routine, so we will skip the details.

. THE LANGUAGE OF PA

¿e language of arithmetic, mentioned in the discussion of induction
in the previous section, can be described more precisely as follows. Its
symbols are:

Constant: 
Variables: a,b, c, . . . (lowercase Roman letters)
Function symbols: S,+, ċ (for successor, sum, product)
Relation symbol: =
Logic symbols: , (and), - (or),  (not), � (implies), ∀ (for all), §

(there is)
Parentheses: (, )

¿ese symbols are combined by the following rules to build terms,
equations, and formulas. ¿e constant, variable, and function symbols
are used to build terms:  or a variable is a term, and if t and t are
terms then so are

S(t), (t + t), and (t ċ t).

In particular, the terms include the numerals ,S(),SS(), . . . for the
natural numbers, which we will o en abbreviate by their usual names
, ,, . . . . We need parentheses to distinguish between terms with po-
tentially di�erent meanings, such as

S((a + b)) and (S(a) + b).

But, as in ordinary mathematics, we omit parentheses when there is no
risk of confusion. In particular, we write SS() instead of S(S()), and
so on.

From terms t, t we can also build the equation (t = t) with the
help of the equality symbol. An equation becomes ameaningful sentence
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when numerals are substituted for its variables. Equations are the sim-
plest type of arithmetic formula; from them we build formulas in gen-
eral with the help of logic symbols: the connectives or Boolean operations
,,-, , and� and the quanti�ers∀ and §.¿us if φ and φ are formulas
then so are

(φ , φ), (φ - φ), ( φ), ∀xφ, §xφ,

where x is a variable in φ not already in the scope of ∀ or §.
¿e language of PA is capable of expressing all the usual sentences

about natural numbers, and also all the usual relations between, and
properties of, natural numbers. Some examples are:

. ∀n ( = S(n)),
which is the �rst Peano axiom, stating that  is not a successor.

. §l(l +m = n),
which says thatm B n.

. §l(l ċm = n),
which says thatm divides n.

Examples  and  show that the relations “m B n” and “m divides n” are
de�nable in the language of PA, so we can use these relations (to help
readability) on the understanding that they abbreviate the formulas in
examples  and . For example, using the “divides” abbreviation and the
abbreviation  for S() we can de�ne the property “p is prime” by the
formula

. ∀l(l divides p� (l =  - l = p)).

We can de�ne the relation P(x, y) = z, where P denotes the pairing func-
tion found in section ., by the equation

.  ċ z =  ċ x + (x + y) ċ (x + y+ ),

where  abbreviates S() and  abbreviates SS(). Also, if P and P are
the projection functions that recover x = P(z) and y = P(z) from z =
P(x, y) then x = P(z) means §y(P(x, y) = z) and y = P(z) means
§x(P(x, y) = z), so:

. §y( ċ z =  ċ x + (x + y)(x + y+ ))
expresses the relation x = P(z) and

. §x( ċ z =  ċ x + (x + y)(x + y+ ))
expresses the relation y = P(z).
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Simpli�cation of Connectives

¿e Boolean operation symbols ,,-, ,� are used because they corre-
spond to the words “and,” “or,” “not,” and “implies” used in natural lan-
guage, hence they make it easy to move between natural language and
the language of PA. However, it is possible, and sometimes convenient,
to work with a smaller set of connectives.

For example, we can drop the connective� because

φ� φ is logically equivalent to ( φ) - φ.

Also, we can drop either of ,,- in favor of the other because

φ , φ is logically equivalent to  (( φ) - ( φ)), and
φ - φ is logically equivalent to  (( φ) , ( φ)).

¿us it su�ces to use just the connectives -, .

Prenex Form

¿e simpli�cation just achieved, reducing to the connectives -, , leads
to a more important simpli�cation in the use of quanti�ers: the so-called
prenex form inwhich all quanti�ers are at the front of the formula. Prenex
form is achieved by systematically applying the following equivalences
(where we write� to denote logical equivalence) to move quanti�ers to
the le of connectives:

 ∀xφ� §x φ
 §xφ� ∀x φ

φ - ∀x φ(x)� ∀y(φ - φ(y))
φ - §x φ(x)� §y(φ - φ(y))

In the latter two equivalences we rename the quanti�ed variable x in φ,
if necessary, by a variable ynot occurring in φ.

. ARITHMETICALLY DEFINABLE SETS

From now onwe call the properties de�nable in PA, and the correspond-
ing sets, arithmetically de�nable. Using the equivalences above, we can
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reduce any arithmetically de�nable property α(u) to one de�ned by a
formula in prenex form:

QxQx�Qnxn φ(x,x, . . . ,xn,u),
whereQ,Q, . . . ,Qn are quanti�ers∀ or §, and φ is quanti�er-free.¿at
is, φ consists of a series of equations between terms linked by the con-
nectives - and  (also known as a Boolean combination of equations).
And terms, as we explained in the previous section, are built from the
variables x,x, . . . ,xn,u and the constant  by means of the S, +, and ċ
functions.

At the cost of complicating terms by inclusion of the projection func-
tions P and P, we can reduce any two adjacent quanti�ers of the same
type to a single one, because

∀x∀y φ(x, y)� ∀z φ(P(z),P(z)), and
§x§y φ(x, y)� §z φ(P(z),P(z)).

By such reductions we eventually arrive at a prenex formula in which the
quanti�ers alternate, either

∀z§z� ψ(z, z, . . . , zm,u)
or

§z∀z� ψ(z, z, . . . , zm,u),
where ψ is a quanti�er-free combination of equations between terms
built from z, z, . . . , zm,u using the functions S,+, ċ,P, and P.¿e �rst
type, in which there are m alternating quanti�ers beginning with ∀, is
called a Π

m formula. ¿e second is called a Σm formula.2
It turns out that m is a good measure of the complexity of an arith-

metical property α(u). In particular, a Σ property is one that is “com-
putably enumerable” in a sense we will explain in the next subsection.

Σ Properties

It follows from the de�nition of Σm above that a property α(u) is Σ if
there is a quanti�er-free formula ψ(z,u) such that

α(u)� §z ψ(z,u).
2¿e reasons for the notation include: Π because the ∀ quanti�er is like a logical

“product,” Σ because § is like a logical “sum,” and the superscript  indicates that the
quanti�ers are over the objects of lowest type, the natural numbers.¿is leaves the option
of a possible superscript  when quantifers are over sets of natural numbers.
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¿e formula ψ(z,u) is a Boolean combination of equations t = t be-
tween terms built from the variables u, z and the constant  by means
of the functions S,+, ċ,P, and P. ¿ese functions are obviously com-
putable, so for any values of the variables u, z we can compute whether
each equation t = t is true or not.

Moreover,ψ(z,u) is a combination of these equations by the connec-
tives - and  . So, given the truth values (“true” or “false”) of the equa-
tions, we can compute the truth value of the combination ψ(z,u) with
the help of the so-called truth tables for - and  : e-e is true just in case
one of e, e is true,  e is true just in case e is false.

¿us, for any given values of u, z, we can compute whether ψ(z,u)
is true or false. By systematically trying all pairs `u, ze we can eventually
�nd each u for which §z ψ(z,u). We can therefore make a list of all such
u, which is whywe say that the set ofu such that §z ψ(z,u) is computably
enumerable.

Note that we do not claim to be able to compute, for each u, whether
§z ψ(z,u) is true. We claim only that, if it is true, we will eventually �nd
out. If §z ψ(z,u) is false wewill search endlessly for a z such thatψ(z,u),
and may never know that our search is in vain. Indeed we will show, in
section ., that there are Σ properties §z ψ(z,u) for which there is no
algorithm to compute the truth value of §z ψ(z,u) for each u.3

¿econcept of a computably enumerable property obviously depends
on the de�nition of “computable,” a concept we study more deeply in
chapters  and . However, we can reveal that the concept of computable
enumerability coincides with the concept of a Σ property, in the follow-
ing precise sense.

If we de�ne a Σ property to be one de�ned by a formula

§x§x�§xn ψ(x,x, . . . ,xn,u), (*)

whereψ is a Boolean combination of equations between terms built from
variables, , and the S,+, and ċ functions, then such a property is clearly
computably enumerable, by an argument like that above. Conversely,
once the concept of “computable” is precisely de�ned, it can be shown
that any computably enumerable relation is of the form (*). In fact, it was

3All mathematicians know computable properties ψ(z,u) with no known algorithm
to compute the truth value of §z ψ(z,u). One is the property “u consecutive zeros occur
before the zth decimal place of π.” But it is a di�erent matter to prove that no algorithm
exists.
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shown byMatijasevič () thatψ(x,x, . . . ,xn,u) can be a single equa-
tion t = t, where t and t are terms built from the S,+, and ċ functions.
In other words, t and t are polynomials in the variables x,x, . . . ,xn,u.

¿us computably enumerable properties, and hence allΣ properties,
are in fact Σ of a particularly simple form.

. LIMITS OF ARITHMETIZATION

In section . we raised a doubt whether arithmetization can give a good
account of sets of real numbers—in contrast to sequences of real numbers,
which can be encoded by sets of natural numbers. In this section we will
explain why sets of real numbers cannot all be encoded by sets of natural
numbers. ¿is puts arbitrary sets of real numbers beyond the scope of
arithmetization as it is normally understood.

At the same time we will see that sets of natural numbers cannot all
be encoded by natural numbers. ¿is is why sets of natural numbers are
viewed as objects di�erent in type from the natural numbers themselves
(and why the arithmetization project for analysis needs sets of natural
numbers as well as natural numbers). An equivalent statement is that
the real numbers (which correspond to sets of natural numbers) cannot
all be encoded by natural numbers. ¿is limits how many real numbers
we can de�ne, because de�nitions are �nite strings of symbols, which can
be encoded by natural numbers.

¿e following theorem of Cantor () explains both of the facts
above, and much more.

Cantor’s theorem. For each set S there is no one-to-one correspondence
between the elements of S and the subsets of S.

Proof. Suppose that, for each x > S, there corresponds a subset Sx b S. It
su�ces to show that the subsets Sx do not include all the subsets of S.

Indeed, they do not include the subset

X = �x > S � x ~> Sx�,

because X di�ers from Sx with respect to the element x: x > X� x ~> Sx.
j

Obviously, there is a one-to-one correspondence between the ele-
ments of S and certain subsets of S—for example, we can let the element x
correspond to the subset �x�—so Cantor’s theorem essentially says that
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any set has more subsets than elements. In particular, there are more sets
of natural numbers than natural numbers, andmore sets of real numbers
than real numbers.¿is is why a set of natural numbers cannot in general
be encoded by a natural number, and why a set of real numbers cannot
in general be encoded by a real number (or by a set of natural numbers).

¿eDiagonal Argument

¿e devastatingly simple argument in Cantor’s theorem, called the diag-
onal argument, can be adapted to many situations. It shows, for example,
that if we have a de�ned sequence S,S,S, . . . of sets of natural num-
bers, then we can explicitly de�ne a set X not in the sequence by

n > X� n ~> Sn.
In particular, if the sequence is arithmetically de�nable—in the sense
that the relation m > Sn is arithmetically de�nable—then D is itself an
arithmetically de�nable set. We conclude immediately that it is impos-
sible to arithmetically de�ne the sequence of all arithmetically de�nable
sets—even though we can certainly compute a list of all the formulas φ
that de�ne these sets. ¿e catch is that the relation “φ(m) holds for the
nth formula φ on the list” is not arithmetically de�nable. ¿is follows
from a further re�nement of the diagonal argument that we will see in
section ..

¿ere we will show that the Σ sets can be arranged in a sequence for
which the diagonal set X (necessarily not Σ ) is Π

 . In the language of
computability, there is a computably enumerable set whose complement
is not computably enumerable. ¿e generalization of this result to any
number of quanti�ers is that, for each k, there is a Π

k set that is not in
Σk. It follows that Σ


k+, which includes Π


k, is a larger class of sets than

Σk.
Now if m > Sn is an arithmetically de�nable relation, in Σk say, then

S,S,S, . . . are all in Σk.¿us an arithmetically de�nable sequence fails
to include all arithmetically de�nable sets because Σk fails to include
Σk+.

De�nability and Computability

¿e result just described is typical of the way our ability to de�ne sets
falls short of the totality of all sets. It means that there is no well-de�ned
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class of “de�nable sets”—rather, we have to choose classes of sets that are
big enough for the purposes we have in mind.

In chapters  and  we will study the two most obvious choices: the
arithmetically de�nable sets and the computable sets. A system ACA of
analysis based on arithmetically de�nable sets is big enough to prove all
the theorems of basic analysis—the intermediate and extreme value the-
orems, Heine-Borel and Bolzano-Weierstrass theorems—and even some
theorems thought to be quite hard, such as the Brouwer �xed point and
Jordan curve theorems. A system RCA based on computable sets is not
as strong, but still useful. ¿e only theorem on the above list that RCA

can prove is the intermediate value theorem. However, RCA is strong
enough to prove equivalences between many theorems that it cannot
prove outright.

¿is makes RCA a good base theory for �nding which theorems of
analysis are really equivalent to each other, and which are stronger than
others. A surprising outcome of this investigation, which will unfold in
chapters  and , is that most of the basic theorems of analysis fall into
just three levels of “strength.”



C H A P T E R 
■■■■■

Classical Analysis

In the previous chapter we established that many of the basic objects of
analysis, such as real numbers, sequences, in�nite series, and continuous
functions, can be arithmetized.¿at is, they can be de�ned in terms of, or
encoded by, natural numbers and sets of natural numbers.¿is discovery
paves the way for axiom systems of analysis, based on the system PA of
Peano arithmetic.

In the present chapter, we explore the basic concepts that arise when
real numbers and continuous functions are studied, particularly the limit
concept and its use in proving properties of continuous functions. We
give proofs of the Bolzano-Weierstrass and Heine-Borel theorems, and
the intermediate and extreme value theorems for continuous functions.
Alsowe use theHeine-Borel theorem to prove uniform continuity of con-
tinuous functions on closed intervals, and its consequence that any con-
tinuous function is Riemann integrable on closed intervals.

In several of these proofs there is a construction by “in�nite bisec-
tion,” which can be recast as an argument about binary trees. ¿e role
of trees in analysis will be explored more fully in chapter , but in this
chapter we use it to construct an object that will be important in that
chapter—the so-called Cantor set.

. LIMITS

Limits of Sequences

Analysis is fundamentally concerned with the outcomes of in�nite pro-
cesses on real numbers, or limits. For example, the following equations
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express the real numbers /,
º
, and π as the outcomes of certain in�-

nite processes.



= .�

º
 =  +



 +


 +


 +

�

π

=  − 


+ 

− 

+ 

−� .

In each case the right-hand side arises from a process producing an in�-
nite sequence of rational numbers:

• ¿e in�nite decimal arises from the sequence of �nite decimals

., ., ., . . . .

• ¿e in�nite continued fraction arises from the sequence of �nite
fractions

,  + 

,  + 

 + 


, . . . .

• ¿e in�nite sum arises from the sequence of partial sums

,  − 

,  − 


+ 

, . . . .

And the le -hand side is the limit of the sequence, as de�ned in section
..

Limits of Functions

A sequence a,a,a, . . . may be seen as a function f on the positive
integers,

f(n) = an,
so we can view its limit l as the limit of f(n) as n tends to in�nity. We
also write f(n)� l as n�ª, as mentioned in section ..

More generally, we can de�ne limits of a real-valued function f of a
real variable x (a special case of this occurred in the de�nition of conti-
nuity at a point in section .).
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De�nitions. If f is a real-valued function, de�ned on some subset of R,

. f(x)� l as x � a if, for each ε A , there is a δ A  such that

Sx − aS < δ� Sf(x) − lS < ε.

. f(x)� l as x �ª if, for each ε A , there is an N A  such that

x A N� Sf(x) − lS < ε.

Limit Points of a Set

De�nition. A point l is called a limit point of a set S b R if, for each
ε A , there are points of S other than l in the interval (l − ε, l + ε).
We also express the de�ning condition by saying “each neighborhood of
l contains points of S other than l.”

An important example is the set S = Q of rational numbers. Here,
every real number x is a limit point of S, since each neighborhood of x
contains members of the lower Dedekind cut for x, which are rational.

Youmay wonder: do we really need the concept of limit point? Might
not every limit point be the limit of a sequence of points drawn from S?
Well, yes, but we will see in section . that even the existence of limit
points is a weighty question, which brings to light some important issues
in the foundations of analysis.

. ALGEBRAIC PROPERTIES OF LIMITS

To avoid many tedious and complicated calculations of “δ for given ε”
we prove that the sum, di�erence, product, and quotient of convergent
sequences are themselves convergent, and that they converge to the ex-
pected values.

Algebra of limits. If an � a and bn � b as n�ª then also

an + bn � a + b ()
an − bn � a − b ()
an ċ bn � a ċ b ()
an~bn � a~b if b x . ()
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Proof. For () we have to make an+bn within ε of a+b for n greater than
a suitably chosen N. Given that an � a and bn � b we can �nd positive
integers A,B so that

n A A� San − aS <
ε


and n A B� Sbn − bS <
ε

.

¿en with N = max(A,B) we have San − aS < ε~ and Sbn − bS < ε~ for
n A N, so

San + bn − (a + b)S B S(an − a) + (bn − b)S
B San − aS + Sbn − bS

B ε

+ ε

= ε.

¿us an + bn � a + b as n�ª.
For () the argument is similar.
For () we want to make anbn − ab < ε. To do this we use a trick,

writing

anbn − ab = anbn − abn + abn − ab = bn(an − a) + a(bn − b).
Now we have to make San − aS and Sbn − bS small enough to compensate
for the factors bn and a. By making Sbn − bS < ε~SaS (by choosing n A B
say) we can compensate for the factor a.

To compensate for the variable factor bnwe�rst choosen large enough
to make SbnS < SbS, which is possible because bn � b. ¿en we make n
larger, if necessary, so as to make San − aS < ε~SbS (by choosing n A A
say). ¿en for n A N = max(A,B) we have

Sanbn − abS = Sbn(an − a) + a(bn − b)S
B SbnSSan − aS + SaSSbn − bS

B SbS ε
SbS + SaS ε

SaS
= ε

+ ε

= ε,

as required to prove that anbn � ab.
For () we view an~bn as the product of an and ~bn. ¿en, by the

result () we are reduced to proving that

bn
� 
b

as n�ª when b x .
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To do this we have to make U 
bn
− 
b U < ε. Well,


bn

− 
b
= b − bn

bbn
,

and we can make this smaller in absolute value than ε as follows. First
make SbnS A SbS~ A , which is possible for su�ciently large n since
bn � b x , and then choose n larger, if necessary (say n A N) so as to
make Sb − bnS < εSbS~.

¿is gives

V 
bn

− 
b
V = Vb − bn

bbn
V B εSbS

~
SbS~ = ε,

as required. j
¿ere are similar proofs that if f(x) � l and g(x) � m as x � c

then also

. f(x) + g(x)� l +m,
. f(x) − g(x)� l −m,
. f(x) ċ g(x)� l ċm,
. f(x)~g(x)� l~m, ifm x .

. CONTINUITY AND INTERMEDIATE VALUES

Our intuition of a continuous function is onewhose graph is “unbroken”:
that is, a curve “without gaps” just as the number line R is without gaps.
However, the usual de�nition of continuous function is in terms of the
limit concept, and the idea of its graph having no gaps is captured by a
theorem—the intermediate value theorem.

Recall from section . that a function f is continuous at c if f(x)�
f(c) as x � c; f is continuous on a set S b R if f is continuous at each
point in S.

Intermediate value theorem. If f is continuous on an interval [a,b], with
f(a) <  and f(b) A , then f(c) =  for some c in [a,b].

Before proving the theorem we remark that there is nothing special
about the value  of f. A similar proof shows that f takes every value
between f(a) and f(b)—hence the name “intermediate value theorem.”
In fact, the endpoints a and b are unnecessarily general. We can take
a =  and b =  without loss of generality, as we do in the proof below.



 ■ CHAPTER 

Proof.Onexactly one half of the interval [,]—either [, ~]or [~, ]—
we have f(x) B  at one end of the subinterval and f(x) C  at the other.
If f(x) =  at either end we are done. If not, we have an interval [a,b]
with f(a) <  and f(b) A  and we can repeat the process in [a,b].

¿at is, if f(x) x  at the midpoint of [a,b] we get exactly one half
[a,b] of [a,b] for which f(a) <  and f(b) A . Proceeding in this
way we either �nd a bisection point x, at some stage, where f(x) = , or
else we obtain an in�nite nested sequence of closed intervals

[a,b] a [a,b] a [a,b] a �

such that f(an) <  and f(bn) A  for each n. Also, since each interval
is half the one before, they have a single common point, c, by nested
interval completeness (section .).

We then must have f(c) = . If f(c) A  then the continuity of f
gives f(an), f(bn) A  for any an,bn su�ciently close to c, contrary to
the construction of an,bn. And f(c) <  is ruled out similarly.

¿us we either �nd a point where f(x) =  at some stage of the bi-
section process, or else we obtain such a point as the limit of intervals
arising in the bisection process. j

Essentially the same proof as this was given by Cauchy (). An En-
glish translation of Cauchy’s proof may be found in Bradley and Sandifer
(), pages –.

¿e Fundamental ¿eorem of Algebra

It follows from the algebraic properties of limits in the previous section,
and the de�nition of continuity, that the sum, di�erence, and product
of continuous functions are continuous. Add to these the easily checked
results that constant functions and the identity function are continuous,
and we can infer the continuity of any polynomial function

f(x) = anxn +� + ax + a, where a,a, . . . ,an > R.

Notice also that for n odd, f(x) will have the same sign as an for n
large and positive, and the opposite sign for n large and negative. ¿is is
because anxn exceeds the sum of all the others in absolute value when x
is su�ciently large, and xn A  for x A  and xn <  for x < .
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¿us it follows from the intermediate value theorem that f(x) = 
for some x when f is an odd-degree polynomial with real coe�cients. In
fact we have shown that any such equation has a real solution.

¿is is a special case of the fundamental theorem of algebra (FTA).
¿e general case removes the restriction that n be odd, and allows the
solution to be a complex number. Gauss () gave a proof of FTA by
reducing any polynomial equation with real coe�cients, f(x) = , to
one of odd degree by a purely algebraic (though complicated) argument.
He was able to repeatedly divide the degree of the equation by —thus
ultimately obtaining an odd-degree equation—with the help of quadratic
equations (which is where complex solutions arise).

One such reduction may be found in Dawson (). From the foun-
dational point of view, the subtlest part of Gauss’s proof is the odd-degree
case and its reliance on the intermediate value theorem. ¿is is the part
that rests upon the completeness of the real numbers. Indeed, it was the
attempt of Bolzano () to justify Gauss’s proof—by proving the inter-
mediate value theorem—that brought the issue of completeness to light.
Bolzano appealed to completeness in terms of least upper bounds but, as
the proof above shows, onemay also appeal to the existence of a common
point in each nested sequence of closed intervals.

. THE BOLZANO-WEIERSTRASS THEOREM

It is clear that a set cannot have a limit point unless it is in�nite, and
that certain unbounded in�nite sets (such asN) do not have limit points
either. However, �niteness and unboundedness are the only two obstruc-
tions to the existence of limit points.

Bolzano-Weierstrass theorem. If S is an in�nite set of points between real
numbers a and b, then S has a limit point.

Proof.Without loss of generality we can take a =  and b = , so S is a set
of points in [,]. Since S is an in�nite set, at least one half of [,]—either
[,/] or [/,]—contains in�nitely many points of S.

We let [a,b] be the le most half of [,] that contains in�nitely
many points of S, and repeat the argument in [a,b]. ¿is gives a half
[a,b] of [a,b] that also contains in�nitely many points of S. Contin-
uing in this way we obtain an in�nite nested sequence of closed intervals
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[a,b] a [a,b] a [a,b] a � ,

each of which contains in�nitely many members of S.
Since each interval is half the length of its predecessor, there is a sin-

gle point c common to all the intervals [an,bn]. Also, since these inter-
vals become arbitrarily small, each ε-neighborhood of c contains some
[an,bn], and hence in�nitely many points of S.

¿us c is a limit point of the set S. j

Corollary (sequentialBolzano-Weierstrass).Abounded in�nite sequence
x,x,x, . . . of reals contains a convergent subsequence xn ,xn ,xn , . . . .

Proof. Let S = �x,x,x, . . .�, and �nd an in�nite nested sequence of
closed intervals

[a,b] a [a,b] a [a,b] a � ,

as in the proof of the theorem. Now de�ne a subsequence of x,x,x, . . .
by

xn = x,
xnk = next term in the sequence, a er xnk− , that is in [ak,bk].

Since there are in�nitely many terms of the sequence in [ak,bk], xnk is
always de�ned, so the subsequence is in�nite. And it is convergent (to c)
because its kth term lies in [ak,bk], and hence within distance −k of c.
j

We prove the sequential Bolzano-Weierstrass theorem to get around
the di�culty, noted in section ., of arithmetizing the concept of set
of real numbers. Notice that the sequence of intervals [ak,bk] is de�n-
able (by induction) but not obviously computable, since a �nite computa-
tion cannot test whether there are in�nitely many terms of the sequence
x,x,x, . . . in a given interval. ¿is prevents us from computing the
sequence of intervals [ak,bk]. ¿is state of a�airs is a clue that classical
analysis sometimes requires non-computable processes, a fact that will
gradually become clearer.
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. THE HEINE-BOREL THEOREM

¿eprocess of in�nite bisection, used to “narrow the region of in�nitude”
in the proof of Bolzano-Weierstrass, can be used in other situations. In
this section we study another situation of fundamental importance, in
the Heine-Borel theorem. Yet despite its similar proof, Heine-Borel is
weaker than Bolzano-Weierstrass in a subtle but precisely de�nable way
(see chapter ).

Heine-Borel theorem. If S is an in�nite set of open intervals that covers
[, ], then some �nite subset of S also covers [, ].

Proof. Suppose on the contrary that no �nite subset of S covers [,]. It
follows that at least one half of [,]—namely, [,/] or [/,]—also can-
not be covered by �nitely many members of S.

Let [a,b] be the le most such half and repeat the argument in
[a,b]. ¿is gives a half [a,b] of [a,b] that cannot be covered by
�nitely many members of S, and so on. In this way obtain an in�nite
nested sequence of closed intervals

[a,b] a [a,b] a [a,b] a � ,

none of which can be covered by �nitely many members of S.
Since each [an,bn] is half the length of its predecessor, these inter-

vals have a single common point c. But c lies inside some open interval I
belonging to S, and therefore so does any su�ciently small [an,bn].¿is
contradicts the conclusion that [an,bn] cannot be covered by �nitely
many members of S. So it was wrong to suppose that [,] cannot be
covered by �nitely many members of S. j

Corollary (sequentialHeine-Borel). If I, I, I, . . . is an in�nite sequence
of open intervals that covers [, ], then the �nite sequence I, I, . . . , In
also covers [, ] for some n.

Proof. Let S = �I, I, I, . . .�. ¿en it follows from the theorem that
�nitely many of the Ik cover [,]. And, for some n, these Ik are included
in the sequence I, I, . . . , In. j

¿eopenness of the intervals I in S comes into playwhenwe conclude
from c > I that some [an,bn] ⊂ I. In fact, it is possible to cover [,] by
in�nitely many closed intervals, no �nite subset of which covers [,].
An example is the following sequence of closed intervals: [,] (which
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covers ), followed by [~, ], [~, ~], [~, ~], . . . (which cover the
remaining points).

Heine-Borel has many important consequences, some of which we
will see in section .. But while we are on a roll with in�nite bisection
constructions we will do one more of fundamental importance.

. THE EXTREME VALUE THEOREM

We saw in section . that the graphs of continuous functions have “no
gaps in the middle” in a certain sense (the intermediate value theorem).
We now show that, on closed intervals, they also have “no gaps at the top
or bottom.” To be precise, we have:

Extreme value theorem. If f is a continuous function on [, ] then f
attains both a maximum and a minimum value on [, ].

Proof.We �rst prove that f is bounded on [,]. Suppose on the contrary
that f is unbounded on [,]; that is, f takes arbitrarily large positive or
negative values.

In that case f is unbounded on some half of [,]. As usual, we let
the le most such half be [a,b], and repeat the argument (“narrow-
ing towards a point of unboundedness”).¿is ultimately gives an in�nite
nested sequence of closed intervals

[a,b] a [a,b] a [a,b] a � ,

with f unbounded on each [an,bn]. Since each [an,bn] is half the one
before, there is a single point c common to all the [an,bn].

But since f is continuous, we can �nd an [an,bn] onwhich the values
of f di�er from f(c) by less than a given ε A . ¿is means that f is
bounded on [an,bn], and we have a contradiction. ¿is contradiction
shows that f is indeed bounded on [,]. ¿erefore, by the completeness
of R, there is a least upper bound l to the values of f on [,].

If l is not a value of f then the function 
l− f(x) is continuous and

unbounded on [,], which we have just proved to be impossible. ¿ere-
fore, l is in fact the maximum value of f on [,]. We can similarly show
the existence of a minimum value. j
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. UNIFORMCONTINUITY

Recall from section . that if f is de�ned to be continuous at x = c if, for
each ε A , there is a δ such that

Sx − cS < δ� Sf(x) − f(c)S < ε.

It follows that

x,x′ > (c − δ, c + δ)� Sf(x) − f(x′)S < ε

because

Sf(x) − f(x′)S = Sf(x) − f(c) + f(c) − f(x′)S
B Sf(x) − f(c)S + Sf(c) − f(x′)S
B ε+ ε = ε.

So, renaming ε as ε, we can rephrase the condition for continuity at
x = c as follows: for each ε A  there is a δ A  such that

x,x′ > (c − δ, c + δ)� Sf(x) − f(x′)S < ε. (*)

¿e δ in this condition depends on c, so if f is continuous over a certain
set S we have potentially varying values δ(c) for the same ε as c varies
over S.

If we can �nd a δ satisfying (*) for all c in S then we have what is
called uniform continuity on S. Replacing the δ in (*) by δ~ we get a
more concisely stated condition:

De�nition.A function f is called uniformly continuous on a set S b R if,
for each ε A  and all x,x′ > S, there is a δ A  such that

Sx − x′S < δ� Sf(x) − f(x′)S < ε.

On an open interval S a continuous function may very well fail to
be uniformly continuous. For example, f(x) = ~x is continuous but
not uniformly continuous on (,), because the di�erence 

x −


x+δ grows
beyond all bounds as x approaches . (So this example also shows that
the extreme value theorem fails on open intervals, as is obvious from the
graph in �gure .. Related to this, the Heine-Borel theorem can also fail
on open intervals.)
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Figure . : Unbounded continuous function on the open interval (,)

However, a continuous function on a closed interval is uniformly con-
tinuous. It su�ces to prove this for the interval [,].

Uniform continuity on closed intervals. If f is continuous on [, ] then
f is uniformly continuous there.

Proof. Given ε A  and any c > [, ], continuity of f gives a δ(c) A 
such that

x,x′ > (c − δ(c), c + δ(c))� Sf(x) − f(x′)S < ε.

¿e open intervals (c − δ(c), c + δ(c)), for all c > [, ], cover [,]. So,
by the Heine-Borel theorem, some �nite collection of them also covers
[,]. Call the �nitely many covering intervals I, I, . . . , In.

¿en if x,x′ lie in the same Ik we have Sf(x) − f(x′)S < ε.
Since I, I, . . . , In are open intervals, any two of them that overlap

have an open interval in common. We let δ be the minimum length of
the overlaps among I, I, . . . , In.
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Now if x,x′ are not in the same Ik there is at least one interval of
overlap lying between them, and hence Sx − x′S C δ. Consequently,

Sx − x′S < δ� x,x′ > same Ik� Sf(x) − f(x′)S < ε,

which shows that f is uniformly continuous. j
Remark. It is worth seeing how this proof can be modi�ed so as to ap-
peal only to the sequential Heine-Borel theorem mentioned in section
.. Namely, inside each interval (c − δ(c), c + δ(c)) we can choose ra-
tional numbers c�,d� with

c − δ(c) < c� < c < d� < c + δ(c),

since any real number has rational numbers arbitrarily close to it. ¿en
the rational intervals (c�,d�) cover [,], because they cover each c > [,].
Also, since (c�,d�) ⊂ (c − δ(c), c + δ(c)) we have

x,x′ > (c�,d�)� Sf(x) − f(x′)S < ε,

so we can argue as before that f is uniformly continuous.
But now, the intervals (c�,d�) can be put in a sequence, since they

correspond to pairs of rational numbers, and hence (by the encoding of
pairs of natural numbers by natural numbers explained in section .) to
natural numbers. ¿us it now su�ces to appeal to the sequential Heine-
Borel theorem (and so we get around the di�culty that arbitrary sets of
intervals cannot be arithmetized).

Riemann Integrability

It follows from the above proof that if f is continuous on [,], and any
ε A  is given, then we can divide [,] at points  = c < c < c < � <
cm+ =  in such a way that

ci B x, y B ci+� Sf(x) − f(y)S < ε.

We can therefore �t the graph of y = f(x) between the graphs of the
step functionswhose values di�er by at most ε for all x in [,] (see �gure
.).¿e lower step function has the constant value, on [ci, ci+), equal to
the minimum value of f on [ci, ci+] (which exists by the extreme value
theorem). ¿e upper step function has the constant value, on [ci, ci+),
equal to the maximum value of f on [ci, ci+].
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Figure . : Step functions approximating a curve

¿e area under each step function is well-de�ned, being just a union
of �nitelymany rectangles, with the values of the upper areas C the values
of all the lower areas. Also, the di�erence between these areas can be
made B any given ε, as we have just seen, so there is a unique value that
lies between them, called the Riemann integral of f on [,], R


 f(x) dx.

¿us uniform continuity of continuous functions on [,] has the
corollary that each continuous function on a closed interval is Riemann
integrable.

. THE CANTOR SET

An important construction involving sequences of nested intervals is the
so-called Cantor set, or middle third set.1 It is constructed by removing
the open middle third, (~,~) of [, ], then removing the open mid-
dle thirds of the closed intervals that remain, and so on inde�nitely. ¿e
points of the Cantor set are those common to all the sets of closed inter-
vals occurring in this in�nite construction.¿e sets of intervals obtained
in the �rst six stages are shown in �gure ..

¿e points of the Cantor set correspond to in�nite paths in the tree
shown in �gure ., called a complete binary tree.

1¿e idea, though not precisely the same construction, �rst appears in Smith ().
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Figure . : Early stages in the construction of the Cantor set

Figure . : Constructing the Cantor set via a tree

We could label the vertices of this tree by �nite sequences of s and
s ( for “le ” and  for “right”), so that each in�nite path corresponds to
an in�nite sequence of s and s. However, it is cleverer to replace each
 by a , because then each in�nite path is given by the ternary (base
) expansion of the corresponding real number. ¿is is because the le 
third of [,] consists of numbers whose ternary expansion begins with
, the right third consists of those whose ternary expansion begins with
, and the le and right thirds of a subinterval give numbers whose next
ternary digit is  or  respectively. ¿us the points of the Cantor set are
exactly those with ternary expansions containing only the digits  and .

Examples are the rightmost path in the le half of the tree, described
by the ternary expansion ċ�, which represents the point /, and
the le most path in the right half of the tree, described by the ternary ex-
pansion ċ�, which represents the point /. More generally, any
point in the Cantor set corresponds to an in�nite nested sequence of in-
tervals, to an in�nite path in the binary tree, and to an in�nite ternary
expansion containing only the digits  and .



 ■ CHAPTER 

. TREES IN ANALYSIS

¿e reader will now have noticed that several proofs in this chapter de-
pend on repeated bisection of closed intervals, and the subsequent deter-
mination of points by nested sequences of intervals whose lengths tend
to zero. ¿e set of all intervals obtainable by repeated bisection can be
conveniently viewed as a tree, as shown in �gure ..

 [ ]

[ ]S

[ ]SS S

[ ]SS SS SS S

Figure . : ¿e complete binary tree of bisected intervals

¿is tree has the whole interval (typically [,]) as its top vertex, and
the vertices below it are the subintervals obtained by bisection.¿us each
vertex has two vertices below it, which is why the tree is called the com-
plete binary tree B. Points of [,] correspond to in�nite nested sequences
of subintervals, and hence to in�nite paths in B. For example, the le most
in�nite path in the tree corresponds to the sequence

[, ] a [, ~] a [, ~] a [, ~] a � ,

which determines the point .
In the proofs above we appeal to special arguments to �nd in�nite

paths, but there is actually a simple general criterion for their existence,
due to Kőnig (), which concerns �nitely branching trees. Such a tree
T can be de�ned as a graph with top vertex v, connected by edges to
�nitely many new vertices v, . . . ,vk, and in general with each vertex vm
connected by edges to �nitely many new vertices vn—and these are the
only edges. Figure . shows an example.

¿emain theorem of Kőnig (), which we will call theKőnig in�n-
ity lemma or the strong Kőnig lemma, states that if a �nitely branching tree
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Figure . : A �nitely branching tree

has in�nitelymany vertices, then it has an in�nite path. Its proof, which re-
sembles the argument for Bolzano-Weierstrass or Heine-Borel, involves
repeated division of an in�nite set into �nitely many parts. Namely, since
T has in�nitely many vertices, one of the �nitely many edges out of v
leads into a subtree T with in�nitely many vertices. By the same argu-
ment, one of the �nitely many vertices out of the top vertex of T leads
into a subtree T of T with in�nitely many vertices. Repeating this argu-
ment inde�nitely, we obtain an in�nite path in T.

¿e weak Kőnig lemma is the special case where T is a subtree of the
complete binary tree. ¿e results earlier in this chapter suggest that the
weak Kőnig lemma is the principle underlying many basic theorems of
analysis. ¿is will be con�rmed in chapter  though, rather surprisingly,
the Bolzano-Weierstrass theorem turns out to be equivalent to the strong
Kőnig lemma, not the weak one.

¿e strong Kőnig lemma is also equivalent to several completeness
properties of R, such as the least upper bound property and the Cauchy
convergence criterion of section .. ¿us trees are a key concept of anal-
ysis—a fact that was not much appreciated until reverse mathematics
brought it to light.
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Arithmetization of Trees

It is clear that only �nitely many vertices of a binary tree, or of a �nitely
branching tree, are a �nite number of edges away from the top vertex.
So the vertices can be enumerated by listing those one edge away from
the top, then those two edges away, and so on.¿is means that such trees
can be encoded by sets of natural numbers, and hence brought within the
scope of the arithmetization project described in the previous chapter.

We will discuss speci�c methods for arithmetizing trees in section
.. For now, it su�ces to see how trees can be encoded by sets of words,
or strings of symbols. ¿e complete binary tree has vertices most natu-
rally encoded by strings of s and s, as shown in �gure ..

 

  

    

Figure . : Labeling the vertices of the complete binary tree

¿e top vertex is labeled by the empty string, those below it by  (on
the le ) and  (on the right). In general, the vertices below the vertex la-
beled σ are labeled σ (on the le ) and σ (on the right). A binary tree T
can now be de�ned as a subset of this set of binary strings with the prop-
erty that if σ > T or σ > T then σ > T. Figure . on the following page
shows an example where T = �empty,, ,,, ,, , , . . .�.
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Figure . : A binary tree
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Computability

¿is chapter foreshadows a constructive approach to analysis, in chapter
, using a system called RCA.¿e initials RCA stand for “recursive com-
prehension axiom,” and in this context “recursive” means “computable.”
¿e goal of RCA is to capture the basic concepts of analysis—real num-
bers and continuous functions—using computable operations on rational
numbers. To prepare for RCA we need to study computable sequences
and computable sets of rational numbers.

Here we will develop the basic results of computability theory, many
of which are about noncomputable sequences and sets, with the goal of
revealing the limits of computable analysis. Two of the key examples are
a bounded computable sequence of rational numbers whose limit is not
computable, and a computable tree with no computable in�nite path.

Computability is an unusualmathematical concept, because it ismost
easily used in an informal way. One o en talks about it in terms of hu-
man activities, such as making lists, rather than by applying a precise
de�nition. Nevertheless, there is a precise de�nition of computability,
so our informal description of computations can be formalized. We de-
scribe two such formalizations in the next chapter, and outline a proof of
their equivalence.

When it comes to applying the concept of computability in analy-
sis, the most appropriate de�nition of computably enumerable set is one
mentioned in section .: that of a Σ set. ¿is agreement between the
concept of computability andΣ—the simplest class of arithmetically de-
�nable sets—suggests that analysis and computability have a common
arithmetical basis, which we will explore further in the next chapter.
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. COMPUTABILITY AND CHURCH’S THESIS

Around the year ,mathematicians began to pose problems about the
existence of algorithms. A famous example was Hilbert’s tenth problem,
so-called because it was tenth on the list of problems that Hilbert pre-
sented to the International Congress of Mathematicians in Paris in .
An English translation of the problem, which may be found in Hilbert
(), reads as follows:

Given a diophantine equation with any number of unknown quan-
tities and with rational integral numerical coe�cients: to devise a
process according to which it can be determined by a �nite number
of operations whether the equation is solvable in rational integers.

By “diophantine equation” Hilbert means a polynomial equation for
which integer solutions are sought. His “process” determining existence
of a solution “by a �nite number of operations” is what we would call
an algorithm. We might also say that Hilbert was calling for a computer
program to decide existence of integer solutions for arbitrary polynomial
equations with integer coe�cients.

¿e discovery of such an algorithm would have been a positive solu-
tion toHilbert’s tenth problem, but the solution turned out to be negative:
there is no algorithm that decides, for any arbitrary polynomial
p(x, y, z, . . .), whether the equation p(x, y, z, . . .) =  has a solution in
integers x, y, z, . . .. ¿is result, due to Matijasevič (), could only be
proved a er a mathematical de�nition of algorithm had been found—
something not even known to be possible in . ¿e �rst de�nitions
of algorithm were discovered by Post in the s, in an analysis of the
processes of formal logic. But Post declined to publish them (see Post
()) because it seemed impossible to prove that the vague concept
of algorithm, or computation, was completely captured by his de�ni-
tions. It was only a er Church (b) and Turing () independently
proposed de�nitions—equivalent to each other and to the de�nitions of
Post—that mathematicians became sure that the concept of algorithm
really had been captured.

A precise de�nition of algorithm will be given in the next chapter,
along with Turing’s decisive analysis of the concept of computation. Here
it is more important to understand certain general characteristics of any
de�nition, namely:
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. Each algorithm can be written as a �nite sequence of symbols in a
�nite alphabet.

. Each algorithm can receive inputs, which are also �nite strings of
symbols in a �nite alphabet.

. On each input, the algorithm performs a series of steps, always the
same steps for the same input.¿e sequence of steps may be called
the computation of the algorithm on the given input.

. If the computation terminates, there is an output string, whichmay
be interpreted as a function of the input string.

. When algorithms are given as strings of symbols they have a uni-
form interpretation; so there is a universal algorithm which, given
an algorithm A and input I, will reproduce the computation of al-
gorithm Aon input I.

Two of the most important types of algorithms are:

• Where the input and output strings are numerals, in which case the
algorithm de�nes a computable function (of positive integers).

• Where the input strings form a set P of questions with yes/no an-
swers, and the output strings are the words yes and no. In this
case we have an algorithm for the problem P . ¿e algorithm is
said to solve P if it outputs the correct answer to each question
in P . We also say that the set of questions with answer yes is a
computable set.

Notice that we do not always require an algorithm’s computation to halt
for each input. ¿e reason for this liberal de�nition is that deciding
whether an algorithm halts for each input is itself a serious problem—
in fact, it is a problem that no algorithm can solve, as we will see shortly. It
follows, as we will also see, that any attempt to restrict the class of algo-
rithms to those that halt on all inputs will be incomplete. ¿e only way
to capture the concept of algorithm completely is to include algorithms
that sometimes do not halt.

It follows that the functions computable by algorithms include some
whose domain is only part of N. For that reason, they are called com-
putable partial functions. ¿e term computable function is usually re-
served for those whose domain is N, but we will also call them com-
putable total functions when we wish to emphasize that the function is
de�ned for all positive integers.
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¿e assumption that the various de�nitions of algorithm by Post,
Church, and Turing capture the informal concept of algorithm is known
as Church’s thesis, because it was proposed by Church (b). As no-
ticed above, this assumption is needed when we wish to prove nonexis-
tence of an algorithm. But Church’s thesis also enables us to be informal
in proving the existence of algorithms. If we can describe an algorithm
informally, then we can be con�dent that the algorithm also has a formal
description.

An important feature of algorithms, which is not obvious from the
informal notion, is that they can be encoded in the language of arith-
metic. We will say more about this in chapter . For the moment we
note only a super�cial, but useful, connection between algorithms and
numbers: there is a computable list A,A,A, . . . of all algorithms, so
each algorithm can be given a number. Since each algorithm is repre-
sented by a string of letters in a �nite alphabet, it su�ces to enumerate
all the strings. ¿is can be done by listing the one-letter words �rst (say,
in alphabetical order), then the two-letter words, and so on. For all the
known de�nitions of algorithm it is easily decided whether a string of
symbols is a meaningful algorithm—this is what a computer does when
it checks whether a program is syntactically correct—so we can omit any
meaningless strings and thereby compute a list A,A,A, . . . of all the
algorithms.

¿ismuch is easy, in principle.¿ehard part is to look at an algorithm
and decide what it actually computes, if anything.

. THE HALTING PROBLEM

Consider the problem consisting of the following questions, which we
call the self-examination problem.

Qn: Does algorithm An, on input n, output the answer no?

SupposeA is an algorithm that solves this problem. It is fair to assume
that A is given the number n in lieu of the question Qn, since the ques-
tion can be reconstructed from the number n. ¿us, for each input n, A
outputs yes if An with input n gives output no, and otherwise Aoutputs
no.

Now, since A is an algorithm, we have A = Am for some number m.
What can Am do on input m? If Am outputs no then the answer to the
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question Qm is yes, so Am must output yes, which is a contradiction.
¿ere is a similar contradiction if the answer to Qm is no, hence the al-
gorithm A = Am cannot correctly answer question Qm. ¿us A fails to
solve the self-examination problem, and we have a contradiction.

I call this problem the “self-examination problem,” because we want
to know what happens when an algorithm is applied to its own number,
which is e�ectively the algorithm itself. If An comes to a halt, then we
can see what the output is. So the only thing preventing us from knowing
the answer to question Qn is knowing whether An halts for a given input.
¿e latter is called the halting problem, and it must be unsolvable because
otherwise we could solve the self-examination problem.

¿e halting problem was �rst proved unsolvable by Turing ()
(with Turing’s own de�nition of computation, but by a rather similar
argument). As we will see, the “self-reference” idea behind the unsolv-
ability proof is the key to many other proofs of noncomputability or
unsolvability.

. COMPUTABLY ENUMERABLE SETS

Closely related to the concepts of computable function and solvable prob-
lem is the concept of computably enumerable set. Informally, a set X is
called computably enumerable if there is a computation (typically, a non-
halting computation) which produces a list x,x,x, . . . of all the mem-
bers of X. ¿ere are several equivalent ways of de�ning a computably
enumerable set X in terms of the concept of computable function.

. X (if it is not empty) is the range of a computable total function f
whose domain is the positive integers. In this case we obtain a list
of members of X as the list f(), f(), f(), . . . .

. If in�nite, X is the range of an injective (that is one-to-one) com-
putable total function g whose domain is the positive integers.
Namely, compute f(), f(), f(), . . . as in the previous de�nition,
but do not put f(n) on the list until it has been checked that f(n)
di�ers from all values of f previously listed. Let g(m) be the mth
number put on the list.

. X is the domain of a computable partial function Φ, where Φ is
computed by the following algorithm. Given input k, compute the
values f(), f(), f(), . . . in succession. If one of these is found
to be k, letΦ(k) = .
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Conversely, ifΦ is any computable partial function, themembers of
its domain can be listed by a computation in “stages” as follows. At
stage n, do n steps in the computations of each ofΦ(), . . . ,Φ(n).
If the computation of anyΦ(k) halts at this stage, put k on the list.

In the three de�nitions above the members x,x,x, . . ., or f(), f(),
f(), . . ., are not assumed to be positive integers. ¿ey could be ratio-
nal numbers, or any other objects namable by words in a �nite alphabet.
However, there is no real loss of generality in assuming them to be pos-
itive integers, since words in �nite alphabet can be encoded by positive
integers, by enumerating them in order of length and (for each length) in
alphabetical order. Fromnow onwewill assume, unless otherwise stated,
that members of computably enumerable sets are positive integers.

Among the computably enumerable sets X are those for which the
membership problem is solvable. ¿at is, there is an algorithm which de-
cides, for each positive integer k, whether k > X. Such a set is called com-
putable. Equivalent de�nitions of computable set in terms of the above
concepts are:

. ¿e characteristic function of X, namely

x(n) =
¢̈̈
¦̈
¤̈

 if n > X
 if n ~> X,

is computable.
. If in�nite, X is the range of an increasing computable function f of
positive integers.
To compute f(n), compute x(),x(),x(), . . . in turn until n val-
ues x(i) have been found equal to . If x(m) is the nth value that
equals , set f(n) = m. (¿usm is the nthmember of X, in increas-
ing order.) ¿en the range of f equals X.
Conversely, if X is the range of an increasing computable function
f, we can decide whether a givenm belongs to X by computing the
values f(), f(), f(), . . . until a value f(n) C m is found. ¿en
m > X if and only if one of these values equalsm.

. X and its complement N − X are both computably enumerable.
If both these sets are computably enumerable, run enumerations of
both sets simultaneously.¿e two sets together include any positive
integer, so any given nwill eventually appear in one of them.When
it does, we will see whether n belongs to X or not.



 ■ CHAPTER 

Conversely, if X is computable, with characteristic function x, we
can compute enumerations of both X andN−X. Namely, compute
the values x(),x(),x(), . . ., and list n in X if x(n) = , inN−X
if x(n) = .

All of these results appeared in Post (), the �rst paper on com-
putably enumerable sets (then called “recursively enumerable sets,” since
theword “recursive”was usedwherewe nowuse “computable”). Post also
found examples of computably enumerable sets that are not computable.
His basic example was obtained by a “self-reference” argument like that
used to prove unsolvability of the “self-examination problem” in the pre-
vious section.

To describe Post’s basic example, and others we will construct later,
we introduce a notation for computable partial functions. Given an enu-
meration A,A,A, . . . of algorithms, let Φk be the computable partial
function of positive integers computed by algorithm Ak. ¿us the value
of Φk(n) is the output (if any) when algorithm Ak is given the numeral
for n as input.

It follows from the universality property  of algorithms in section
. that Φk(n) is computable as a function of the two variables k and n.
To computeΦk(n) one generates the list of algorithms as far as Ak, then
runsAk on the input n. Nowwe are ready for Post’s example, which gives
a computably enumerable set with unsolvable membership problem.

Computably enumerable but noncomputable set. IfD=�k �Φk(k)=�
then D is computably enumerable but not computable.

Proof. Since Φk(n) is a computable partial function of k and n, Φk(k)
is a computable partial function. ¿us D is computably enumerable: we
list its members in the computation which, at stage n, does n steps in the
computations ofΦ(), . . . ,Φn(n) and lists k at any stagewhenΦk(k)=
is found.

Now suppose that D is computable. ¿en its characteristic function,

d(m) =
¢̈̈
¦̈
¤̈

 ifm > D
 ifm ~> D,

is computable, so d = Φk for some k. But then we have the contradiction

k ~> D � d(k) =  � Φk(k) =  � k > D,

by the de�nition of D. Hence D is not computable. j
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¿eexistence of a computably enumerable but noncomputable set in-
�uences the treatment of analysis in the systemRCA, which admits only
computable sets. Many naturally arising sequences r, r, r, . . . (of ratio-
nal numbers, typically) are computably enumerable but not necessarily
computable. To “represent” such a sequence in RCA, we encode it by
the set of pairs S = �`n, rne � n > N�. Since r, r, r, . . . is computably
enumerable, there is a computable function f with f(n) = rn. ¿e set
S of pairs is then computable, because we can decide whether a pair of
the form `n, re is in S by computing f(n) and seeing whether it equals r.
Computing the limit of the sequence r, r, r, . . ., however, is a di�erent
story.

. COMPUTABLE SEQUENCES IN ANALYSIS

Computable objects are the most “concrete” in�nite objects, so it would
be nice if analysis dealt only with computable real numbers and com-
putable functions. ¿e best-known irrational numbers, such as

º
, π,

and e are in fact computable, in the sense that the nth digit in their dec-
imal expansion is a computable function of n. We will explore “com-
putable analysis” further in chapter . However, it is easy to see that anal-
ysis cannot be completely computable. If we take a computable sequence
of rational numbers r, r, r, . . . to be one for which rn is a computable
function of n, then we have:

Computable sequence of rationals with a noncomputable limit.¿ere
is a computable sequence of rational numbers with limit whose nth binary
digit is not a computable function of n.

Proof. Take an injective computable total function fwith rangeD, where
D is a computably enumerable but noncomputable set (such as the one
found in the previous section).¿is gives a computable sequence r, r, r, . . .
of rational numbers rn, where

rn =
n

Q
i=
− f(i).

Indeed, rn has a �nite binary expansion with a  in the places f(), . . . ,
f(n) and zeros elsewhere. And the binary expansion of the limit has 
in the kth place for k > D, and zeros elsewhere, so this binary expansion
encodes the characteristic function d of D. We know that the character-
istic function of D is not computable, so neither is the binary expansion
of the limit. j
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¿is example in fact shows more: a computable increasing sequence
of rational numbers may fail to have a computable least upper bound,
because it is obvious from the de�nition of rn that rn+ A rn. So the com-
putable real numbers are not “complete” in the classic sense, which goes
back to Bolzano (). Bolzano assumed that any bounded set of real
numbers has a least upper bound in his proof of the intermediate value
theorem, and Dedekind ()—writing up an idea he had in —
de�ned real numbers in such a way as to make this least upper bound
property almost obvious, as we saw in section .. Of course, these results
were proved long before computability was understood or even thought
to be an issue in analysis.

It is because of the failure of “least upper bound completeness” that
we adopted the nested interval concept of completeness in the previous
chapter. As we will see in chapter , for a computable sequence of closed
nested intervals, with a single common point, the common point is com-
putable. ¿us, when analysis is limited to computable operations, in the
system RCA of chapter , the nested interval concept of real number is
available.

However, the above example shows that the least upper bound prin-
ciple is not provable in RCA. We can encode the computable sequence
above by the computable set of pairs `n, rne, which belongs to the model
of RCA we construct in section ., whose sets are all the computable
sets. But the limit point of the sequence, being noncomputable, does not
belong to the model, so the model does not satisfy the sentence “every
bounded sequence has a least upper bound.”

. COMPUTABLE TREEWITH NO COMPUTABLE PATH

In section . we saw that many basic results of analysis stem from the
weak Kőnig lemma stating that an in�nite binary tree has an in�nite path.
¿ese results are problematic in computable analysis, and in fact a new
axiom is needed to prove them, because a computable in�nite tree need
not have any computable in�nite path. In this sectionwe give an example.

We �rst construct a pair of computably enumerable sets A,B that are
computably inseparable. A computable total function f is said to separate
sets A and B if f takes only the values  and  and

f(n) =
¢̈̈
¦̈
¤̈

 if n > A,
 if n > B.
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(Informally, f is a machine that says yes or no for each input num-
ber, always saying yes for numbers in A and no for numbers in B.) We
de�ne A and B using the numbering of computable partial functions
Φ,Φ,Φ, . . . from the previous section; namely

A= �k � Φk(k) = �,
B = �k � Φk(k) = �.

¿ese sets defeat any computable functionΦ that tries to separate them.
Any computable f = Φk for some k, so if f separates A and B we have

Φk(k) =  � k > B � Φk(k) = ,
Φk(k) =  � k > A � Φk(k) = .

¿us either value ofΦk(k) is contradictory, and therefore no computable
f separates A and B.

We now use the sets A and B to construct an in�nite binary tree T,
whose in�nite paths separate A and B when we interpret paths as se-
quences of s and s. ¿e in�nite paths are therefore not computable.

Computable tree with no computable in�nite path.¿ere is an in�nite
binary tree T, the vertices of which form a computable set, but whose in�-
nite paths all separate the sets Aand B.

Proof.We view the complete binary tree as the set of all �nite sequences
of s and s, as in section .. A subset T of the vertices is a subtree if
any vertex above a member of T is also in T. An in�nite path in T is an
in�nite sequence of s and s—that is, a function σ(n) whose values are
 or —whose initial segments are all vertices of T. We will construct a
tree T whose in�nite paths are functions σ that separate A and B in the
sense that σ(n) =  if n > A and σ(n) =  if n > B.

To compute T, we construct it in stages, deciding at stage n which
vertices at level n belong to T. We also enumerate A and B in stages,
using the members found by stage n to decide which vertices at level n
to put in T. ¿e idea is to pick vertices that “separate” the members of A
and B found so far, which we can assume to be B n. For example, suppose
that by stage  we have found  and  in Aand  in B. ¿en any vertex of
the form v =  � � (where � denotes either  or ) “separates” the parts
of A and B found so far, because v has value  at places  and  and value
 at place . We therefore put all four vertices of this form in T.

Notice that when v is put in T then all vertices above v are already
in T, because they too “separate” the parts of A and B known at earlier
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stages. It follows that the set T is a tree. Also, T is computable, because
we can decide whether a given vertex v is in T by �nding the level n of v
and then running n stages of the computation just described.

Now consider a path σ in the complete binary tree that separates A
from B; that is, σ(n) =  for each n > A and σ(n) =  for each n > B. ¿e
vertex s at level n on σ separates themembers ofAand B that are B n, and
hence s is in T. Since this is true for all vertices in σ, the whole in�nite
path σ is contained in T. Conversely, if τ is an in�nite path that does not
separateAfromB, thenwe have either τ(n) =  for some n > Aor τ(n) =
 for some n > B. ¿en the vertex t of τ at level n, or one somewhere
below it on τ, will not be put in T, because at the stage when n is listed
in Aor B it will be seen that t fails to separate A from B. Consequently, a
non-separating in�nite path τ is not contained in T.

To sum up, the in�nite paths in T are precisely those that separate A
from B, and hence (by the computable inseparability of A and B) all the
in�nite paths of T are noncomputable. j

. COMPUTABILITY AND INCOMPLETENESS

¿emain theme of this book is the search for the “right axioms” to prove
important theorems, but a secondary theme is the failureof certain axiom
systems to prove certain theorems. A er all, if there was an obvious ax-
iom system to prove all theorems then the question of the “right axioms”
would hardly arise. ¿e question is unavoidable because axiom systems
are inherently incomplete. Any consistent axiom system for mathematics
will fail to prove certain theorems, so we are bound to need new axioms
to prove the missing theorems.

As mentioned in section ., incompleteness is closely related to the
concept of computation. We can now re�ne this claim by de�ning a for-
mal system to be an algorithm that computably enumerates theorems.
¿is covers any axiom system actually in use, and any other theorem-
generating system that can reasonably claim to be formal.

It is now easy to see how unprovable sentences arise, via the com-
putably enumerable but not computable set D of section .. Since D is
computably enumerable its complement is not, so we cannot computably
enumerate all true sentences of the form “n ~> D.” But a formal system, by
de�nition, computably generates theorems, so there is no formal system
F whose theorems include all true sentences of the form “n ~> D” (unless
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F is unsound, and it generates some false sentences). ¿us, if we inter-
pret the concept of formal system broadly—as a machine for generating
theorems—the incompleteness of sound formal systems is an almost ob-
vious consequence of the existence of the set D. Incompleteness in this
general formwas discovered by Post in the s, and he popularized the
argument in his paper Post ().

Incompleteness was rediscovered by Gödel () by a more tech-
nical argument, but in dramatically stronger form: formal systems for
arithmetic, such as PA, are incomplete. Gödel’s incompleteness can be
derived from Post’s by arithmetization of computation. We give more de-
tails in the next chapter.¿e outcome of arithmetization is that sentences
about computably enumerable sets can be translated into sentences in the
language of PA. So, instead of �nding unprovable sentences of the form
“n ~> D” we �nd unprovable sentences about addition and multiplication
of natural numbers.

Gödel’s theorem reveals that incompleteness exists at quite an ele-
mentary level, but alas the unprovable sentences exposed by his con-
struction are not intrinsically interesting. ¿ey do not reveal any facts
about numbers that number theorists wished to know, though they cer-
tainly reveal things about PA that logicians wished to know. For more on
this, see section ..

. COMPUTABILITY AND ANALYSIS

Interesting unprovable sentences emerge when we expand PA to a system
of analysis by introducing variables for sets of natural numbers. ¿en, as
we saw in chapter , it becomes possible to talk about in�nite sequences
and continuous functions, so we can ask which theorems about them are
provable. ¿e answer depends on which set existence axioms we adopt.

¿e simplest reasonable set existence axiom says that computable sets
of natural numbers exist.¿e arithmetization of computation shows that
computable sets have a natural description in the language of PA: they
are the sets that are both Σ and Π

 , as de�ned in section .. ¿us this
set existence axiom is a natural addition to PA, giving the system RCA

of “computable analysis.” We can immediately see, however, that if only
computable sets are required to exist then the resulting axiom system
cannot prove the existence of noncomputable sets such as D. More in-
terestingly, it cannot prove the existence of a limit for every monotonic,
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bounded, sequence of rationals, as we saw in section .. ¿us we have a
natural instance of incompleteness: the monotone convergence theorem,
stating that every bounded monotonic sequence has a limit, is not prov-
able in computable analysis.

We develop the system RCA of computable analysis further in sec-
tion . and chapter . Despite its obvious incompleteness—or indeed
because of it—RCA is a very useful system. It can prove only a few im-
portant theorems of analysis, such as the intermediate value theorem and
the fundamental theorem of algebra. But, crucially, it is able to prove
equivalences between theorems that it cannot prove outright. For exam-
ple, RCA can prove that the monotone convergence theorem is equiva-
lent to the Bolzano-Weierstrass theorem.

¿is makes RCA an ideal base theory for studying theorems of anal-
ysis. Precisely because RCA is not able to prove certain theorems it is
able to compare their strengths by �nding set existence axioms to which
they are equivalent. ¿e monotone convergence theorem, for example,
is equivalent to a set existence axiom (called arithmetical comprehen-
sion) asserting the existence of all sets de�nable in the language of PA.
We study themain set existence axioms, and their equivalents in analysis,
in chapters  and .

Constructive Approaches to Analysis

In this chapter we have sketched the development of computability the-
ory from its origins in logic to its role in the foundations of analysis.
However, computability was an issue in analysis some time before the
concept had a precise de�nition. In fact, it could be said that bothmodern
logic and the associated concept of computation arose from nineteenth-
century concerns about the foundations of analysis. ¿e key �gure in
this development was David Hilbert, and a detailed account of his foun-
dational work (the “Hilbert program”) may be found in Sieg (). Here
we give just a brief summary of some key events, which are the
following.

. Criticism of “nonconstructive” mathematics by Kronecker. In the
s, Kronecker raised objections to concepts like arbitrary real
numbers, which in his opinion were meaningless except in special
cases where the number could be given (essentially) by a
computation.
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. Kronecker’s objections were provoked, in part, by the results about
real numbers proposed by Dedekind (de�ning real numbers non-
computably) andCantor (showing that there are uncountablymany
real numbers).

. Cantor’s diagonal argument, when applied to the “set of all sets,”
led to the paradox of a “set” larger than the “set of all sets.” ¿is
discovery made it clear that the set concept needed clari�cation if
it was to be used as a basis for analysis.

. Hilbert proposed a program for securing the foundations ofmathe-
matics bymeans of axiomatics. He proposed that analysis, in partic-
ular, should be developed in an axiom system for the real numbers,
and that this system be proved consistent by constructive methods
that Kronecker would accept. ¿is was essentially Hilbert’s second
problem of Hilbert ().

. In the following decades Hilbert re�ned his program by describing
the problem as one about computation with �nite objects, namely,
strings of symbols representingmathematical statements.¿eprob-
lem was to show that the process of generating theorems in an
axiom system for analysis—by mechanically applying the rules of
logic—did not generate the sentence “=.”

. ¿us theHilbert programwas reduced to a problem that Kronecker
would have considered meaningful. Indeed, by  it was known
that the question of consistency of an axiom systemwas equivalent
(via arithmetization of computation) to a question of elementary
number theory (PA).

. Alas, this reduction of the consistency problem to a question in PA
was made by Gödel (), who at the same time showed that the
question could not be answered in PA! In fact, the consistency of
PA itself (a system much weaker than analysis) can be expressed
by a sentence Con(PA) in the language of PA—but Con(PA) is not
provable in PA. ¿is result is called Gödel’s second incompleteness
theorem, and it applies as well to any system that contains PA—such
a system cannot prove its own consistency.

. ¿is theorem of Gödel () derailed the Hilbert program (as well
as having an immense impact on logic and computability theory
that we discuss further in chapter ). But, in the meantime, other
mathematicians had followed Kronecker in doing analysis as far as
possible by constructivemethods. One of themost eminent among
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them was Hermann Weyl, whose book (Weyl ()) developed
most of basic analysis in a system rather like RCA plus the arith-
metical comprehension axiom mentioned above.

Of course, Weyl’s work predates the de�nition of computation, so he
has intuitively given “constructions” rather than formal computations.
But with hindsight we can see that Weyl’s constructions are indeed com-
putations, so his book is a precursor of the system we now call ACA

(RCA plus the arithmetic comprehension axiom). In chapter  we con-
�rm that ACA does indeed prove the standard theorems of basic
analysis.



C H A P T E R 
■■■■■

Arithmetization of Computation

In section . we saw that the Σ formulas of Peano arithmetic (PA)
de�ne sets that are “computably enumerable” in an intuitive sense. In
chapter  we studied the intuitive idea of computable enumerability, as-
suming only that it has some formalization where each computably enu-
merable setmay be recovered from a �nite “description,” and the descrip-
tions themselves are computably enumerable.

Under this assumption, we discovered that noncomputable objects
exist: a computably enumerable but noncomputable set, disjoint com-
putably enumerable sets that are computably inseparable, and an in�nite
computable tree with no computable in�nite path. ¿ese results reveal
the absence of certain important objects in computable analysis, such as
least upper bounds of some bounded increasing sequences of rational
numbers.

Now it is time to explain why Σ formulas of PA capture all com-
putably enumerable sets, as claimed byChurch’s thesis of section ..¿is
allows us to capture “computable analysis” in the language of PA, since
computable sets and functions are de�nable in terms of computable enu-
merability, as we saw in section ..

To justify the claim that Σ = “computably enumerable,” in this chap-
ter we make a thorough analysis of the concept of computation. We take
a precise, but intuitively natural, concept of computation and translate it
into the language of PA. ¿e translation is indeed Σ , but with a slightly
di�erent (though equivalent) de�nition of Σ .
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. FORMAL SYSTEMS

Computation has been part of mathematics for thousands of years, but
computability was not thought to be a mathematical concept until the
twentieth century. It emerged from formal systems of mathematics about
 years ago, particularly the Principia Mathematica of Whitehead and
Russell (). ¿eir aim was to produce completely rigorous proofs by
avoiding human errors, such as unconscious assumptions and gaps in
reasoning.

To avoid errors, formal proofs proceed from axioms by rules of infer-
ence. Axioms are viewed as strings of symbols, and the rules produce new
strings (including the “theorems”) from old in a completely mechanical
way. ¿is allows correctness of a proof to be veri�ed without knowing
what its symbols mean. Indeed, proofs could be checked by a machine,
except that suitable machines had not been invented when the �rst for-
mal systems appeared.

¿e very idea of a general symbol-manipulationmachinewas implicit
in PrincipiaMathematica, because that systemwas thought to be capable
of generating all the theorems of mathematics. In the early s Emil
Postmade an analysis of the axioms and rules ofPrincipia, recasting them
asmechanical rules for producing strings of symbols, among which were
the theorems. Post then proceeded to simplify his rules, in the hope of
�nding amechanical way to test the truth of anymathematical statement.

Before long (in ) he realized that this hope was in vain, and that
neither Principia, nor any other consistent system, could generate all the
theorems ofmathematics.1However, he did suspect (correctly, as we now
believe) that he had discovered how to generate all sets of strings of sym-
bols that can be mechanically generated. In other words, he had discov-
ered a mathematically precise formulation of the concept of computabil-
ity, at least as it appears in the concept of computably enumerable set.

Post’s formal systems, which he called normal systems, are now
mainly of historical interest. Smullyan () introducedmore usable sys-
tems in the same style. Smullyan’s elementary formal systems are not well-
known, but (to my knowledge) they are simpler and more elegant than
any other formalization of the computability concept. It is also easy to
use elementary formal systems to simulate the most popular realization
of the computability concept, the Turing machine of Turing (), as we

1¿is was his anticipation of Gödel’s incompleteness theorem; see Post ().
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will see in section .. For this reason I will follow Smullyan’s approach
in this chapter.

. SMULLYAN’S ELEMENTARY FORMAL SYSTEMS

Smullyan models his systems on classical formal systems. ¿ey have ax-
ioms and rules of inference and they are written in a language with con-
stants and variables. But unlike the usual formal systems there are no
parentheses. ¿e constants a,b, c, . . . are simply strung together to form
words, such as aa,aba, cba, . . . . ¿e variables x, y, z, . . . stand for arbi-
trary words (which can be empty), and they can be strung together with
themselves or with constants to form variable words. For example, axb
represents any word that begins with a and ends with b.

In addition, there are upper case symbols P,Q,R, . . ., called set vari-
ables, that represent sets or properties. We write Pw to mean “w > P” or
“w has property P.” We note that w could represent an ordered pair, or
an ordered triple, and so on, in which case P could be viewed as repre-
senting a binary (or ternary, and so on) relation such as a function. We
do this simply by inserting commas between the members of the pair, or
triple, and so on. Finally, there is a symbol� that represents implication.

¿epurpose of an elementary formal system (EFS) is to generate “the-
orems” of the form Pw, where w is a constant word, and thus to “com-
putably enumerate” the members of a set P of words. To this end, the
system has axioms of two kinds:

Axioms of an EFS.

• Pw, for certain constant wordsw, stating that thesew belong to P.
• Px � Px � �� Pxn, for certain variable words x,x, . . . ,xn.
¿is axiom is read “Px implies that Px implies that� Pxn− im-
plies Pxn.” It is logically equivalent to

(Px , Px ,� , Pxn−)� Pxn.

An example, which de�nes the set E of strings of the form aa� a of
even positive length, is

Eaa
Ex� Exaa.
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It is easy to see that we can derive all (and only) theorems of the form
Eaa� a with a positive even number of letters a if we use the obvious
rules of inference, which in fact cover all EFS:

Rules of inference of an EFS.

• In any axiom, the result of substituting an arbitrary word for each
occurrence of a variable is a theorem.

• If U and U � V are theorems, and if U is not itself of the form
X � Y, then V is a theorem. (¿is rule is called modus ponens
a er the similar rule in classical logic.)

(¿e reason for the restriction on modus ponens is the following. IfU is
X� Y, withX andY containing no arrows, thenU � V isX� Y � V,
which means (X , Y)� V. But U is not the same as X , Y, so V does
not follow from U and U � V. However, if X and Y are theorems, and
we also have X� Y � V, then we can concludeV, as you would hope.)

Examples of Axiom Systems

. An EFS generating the set P of palindromes (words spelled the
same backwards and forwards) on the alphabet �a,b�.

Pa
Paa
Pb
Pbb
Px� Paxa
Px� Pbxb

¿ese axioms allow us to start with any one- or two-letter palin-
drome and to expand it to an arbitrary palindrome by repeatedly
attaching the same letter at both ends.

. An EFS generating the set S of words on �a,b, c� which involve
only the letters a,b.

Sa
Sb
Sx� Sy� Sxy
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¿ese axioms generate any word consisting of as and bs by starting
with one-letter words and concatenating arbitrary words.

. An EFS generating the set T of nonempty words on �a,b� with
equal numbers of as and bs.

Tab
Tba
Txyz� Txaybz
Txyz� Txbyaz

¿e �rst two axioms give the two-letter words with equal numbers
of as and bs. ¿e latter two axioms, since x, y, or zmay be empty,
allow one a and one b to be inserted at the same time anywhere in
a word, thus maintaining equal numbers of as and bs.

. NOTATIONS FOR POSITIVE INTEGERS

Elementary formal systems generate “words” rather than “numbers” be-
cause their purpose is to produce theorems or formulas, which are gener-
ally strings of symbols in an alphabet with more than one symbol. How-
ever, numbers themselves can be represented by strings of symbols—
namely, numerals—and hence we can interpret words over any �nite al-
phabet as numbers by viewing the words as numerals.

¿e simplest numerals are the words , , , . . . on a single-symbol
alphabet, where the positive integer n is represented by a string of n ones.
¿ese base one or unary numerals are simple and natural, but in some
ways too simple to be convenient. ¿e main inconvenience is that unary
numerals for even modest size numbers, say  and , are hard to tell
apart—because they are so long.

¿e usual base  numerals are strings of symbols from the alphabet
�, ,,,,,,,,�, but they have the disadvantage that many dif-
ferent strings represent the same number. For example, , , , and so
on all represent the number . ¿e usual base  numerals have the same
disadvantage. If we are content to have numerals only for positive num-
bers then a solution to this problem is given by what Smullyan calls the
dyadic system of numerals. ¿is system gives a one-to-one correspon-
dence between positive integers n and strings of the digits  and . ¿e
dyadic numerals for the �rst few positive integers are the following (with



 ■ CHAPTER 

base  numerals on the le ):

 = 
 = 
 = 
 = 
 = 
 = 
 = 
 = 
 = 
 = 
 = 
 = 
 = 
 = 
. . .

In general, each positive integer n is represented by a string dk�dd,
where d,d, . . . ,dk are the unique digits in �,� such that

n = dk ċ k− +� + d ċ  + d ċ .

Obviously, each string of s and s represents a positive integer. Also, we
can show inductively that the string for each positive n is unique.Namely,
given the unique dyadic numeral for n, the obvious process for adding
 gives the unique dyadic numeral for n + . (See section . for an EFS
that does this.)

Symbol strings in any alphabet �a,a, . . . ,an� can be encoded by
dyadic numerals if we replace a by , a by , a by , and so on.
So all the operations on strings that occur in an EFS can be viewed as op-
erations on numbers.¿is gives a (distant) glimpse of how to arithmetize
computation.

But before doing so we will study the opposite problem: doing arith-
metic in elementary formal systems. ¿is will improve our understand-
ing of the “computational ability” of elementary formal systems, and thus
bolster the claim that they can represent any computation. At the same
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time, we will become more familiar with the computational content of
arithmetic, which will be useful when we come to arithmetize computa-
tion later.

Universal Elementary Formal Systems

An important side e�ect of the encoding of a by , a by , a by ,
and so on, is that words in an arbitrary �nite alphabet may be encoded by
words in the �xed alphabet �,�. ¿is raises the possibility of a universal
EFS that can simulate the operations of any particular EFS. By encoding
the alphabet of each EFS in the alphabet �,�, and perhaps adding a few
more letters for convenience, it should be possible to construct an EFSU
that is universal in the sense that U generates all true statements of the
form “system S generates theorem T,” with some appropriate encoding
of systems and theorems.

In the Turingmachinemodel of computation the corresponding uni-
versal system is called a universal Turing machine, and one was con-
structed in the groundbreaking paper of Turing (). In the EFSmodel
of computation, a universal EFS is described in Smullyan (), pp. –
 and –. We skip the details of a universal EFS, but mention that it
may be used to formalize the argument of section ., wherewe described
a computably enumerable set of natural numbers whose complement is
not computably enumerable.

. TURING’S ANALYSIS OF COMPUTATION

Before we explore EFS computation in detail, we should look at the clas-
sic introduction of computation in Turing (). Turing arrived at his
concept of computation by analyzing the way that humans compute with
pencil and paper. His assumptions (and his reasons for them) about the
way a human “computer” operates (or could operate) were the following:

. ¿e computer can recognize �nitelymany di�erent symbols Sj, and
scans one of them at a time. A “symbol” in this sensemay be a �nite
block of digits or letters of the alphabet, but only �nitelymany such
symbols can be distinguished. “Symbols” that are too similar will be
confused, for example,  and .

. ¿e computer has �nitely many internal states (think of them as
“mental states”) qi for the same reason: if there are in�nitely many,
then some will be too similar to distinguish.
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. Computation is directed by a �nite program, which tells what to do
when a given symbol is scanned while in a given internal state.

. It can be assumed that symbols are written on a tape divided into
squares, one symbol per square, and that at each step of compu-
tation a read/write head replaces the scanned symbol by another
symbol, moves one square to the le or right, and enters another
internal state.

¿e last condition, of course, restricts thewaywenormally use pencil and
paper, but it is a restriction we can endure at the cost of slower computa-
tion. For example, we can compute + on a single line bymov-
ing back and forth between the two numerals, crossing o� digits (that is,
replacing a digit symbol such as  by the crossed digit symbol �) as their
sums are computed and “carrying” digits mentally (that is, by internal
states).

With some practice, it becomes clear that all our familiar computa-
tions can be done under Turing’s conditions, and are “programmable”
by Turing machine. ¿e program of a machine can be written as a �nite
sequence of quintuples, of the form qiSjSkRql (or qiSjSkLql). ¿e com-
mand qiSjSkRql says that if the state is qi and the scanned symbol is Sj,
then replace Sj by Sk, move one square to the right, and go into state ql.
(And similarly if L occurs instead of R.)

It is noteworthy that Post () arrived at virtually the same concept
of computation independently, as Turing himself said in Turing ().
Further details may be found in the papers of Turing and Post, or in-
deed in many books on the theory of computation. ¿e Turing machine
concept was decisive in convincing logicians, notably Gödel, that the in-
tuitive concept of computation could be formalized.

From Turing Machines to Elementary Formal Systems

Another historic paper2worth reading is Post (), in which the Turing
machine concept of computation is translated into one based on word
replacement. Post shows that each computation by a Turing machine T
can be encoded by a sequence of words. ¿e kth word wk encodes the
machine con�guration, consisting of marked portion of T’s tape at step

2¿is paper is famous because it is the �rst in which unsolvability is proved for a prob-
lem posed by a mainstream mathematician; namely, what we now call the word problem
for semigroups. ¿e word problem was posed by¿ue ().
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k, together with a symbol qi, inserted to the le of the scanned symbol
Sj, denoting the current internal state. (Figure . shows an example, with
Sj =  and the head in state q.)

    

q

[   j q    ]

Figure . : A machine con�guration and the word that encodes it

¿e word wk+ results from wk by replacing the subword qiSj in wk,
together with one or two symbols to its le and right, by a new subword,
as required by the program for T. Since there are only �nitely many such
subwords, only �nitely many word transformations are needed to simu-
late the program for T. For example, if the program for T includes the
quintuple qLq then we need the word replacement rules

Skq� qSk for each symbol Sk.

In particular, the rule jq� q j  allows the word in �gure .,

wk = [ j q], to be replaced by the word wk+ = [q j ],

which encodes the next con�guration of the machine.
With a �nite set of rules for word replacement we are very close to

an elementary formal system. Indeed, a rule u � v saying that word
u may be replaced by word v is implemented in an EFS by the axiom
Wxuy� Wxvy. ¿is, then, is how Turing machines can be simulated
by elementary formal systems.Now it is time to explore EFS computation
directly.

. OPERATIONS ON EFS-GENERATED SETS

¿e intuitive property of computable enumerability is preserved by some
of the basic operations on sets, such as union, intersection, and cartesian



 ■ CHAPTER 

product. If we suppose that we can generate lists of members of sets S
and T, then we can also generate lists of members of:

• S 8 T
namely, by listing S and T simultaneously and merging the two
lists.

• S 9 T
namely, by listing S and T simultaneously andmaking a third list—
of the elements that appear in both S and T.

• S � T
namely, by listing `x, ye for each x that appears on the list for S and
each y that appears on the list for T.

In terms of properties, rather than sets, we are saying that if the proper-
ties S(x) and T(x) (corresponding to the properties x > S and x > T)
are computably enumerable, then so are the properties S(x) - T(x),
S(x) , T(x), and S(x) , T(y).
De�nition. A set S (of words in some �nite alphabet) is called EFS-
generated if there is an EFS that proves Sx if and only if x > S.

With this de�nitionwe can con�rm that the above operations—which
preserve computable enumerability in the intuitive sense—also preserve
EFS-generated sets.

Operations on EFS-generated sets. If S and T are EFS-generated sets,
then so are S 8 T, S 9 T, and S � T.
Proof.Given an EFS to generate S and an EFS to generate T, we construct
EFS to generate each of (i) S 8 T, (ii) S 9 T, and (iii) S � T.

(i) Suppose we have an EFS for each of S and T. By rewriting the
system for T, if necessary, we can ensure that the systems have no set
variables in common. ¿e union of the two systems will then function
as two independent systems, proving the theorems Sx for x > S and the
theorems Tx for x > T.

So if X is a set variable not already used, adding the axioms

Sx� Xx, Tx� Xx

gives an EFS that proves the theorems Xx for precisely the x in S 8 T.
(ii) Similarly, adding the axiom Sx � Tx � Xx gives a system that

proves the theoremsXx for exactly the x in S9T, because Sx� Tx� Xx
means (Sx , Tx)� Xx.
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(iii) To set up a system to generate S � T we assume, without loss of
generality, that the comma is not one of the symbols in the systems for
S and T. (If it is, replace it by some other symbol not already used.) ¿is
enables us to use the string x, y to represent the ordered pair `x, ye.

Under this assumption we combine the systems for S and T as above
and add the axiom

Sx� Ty� Px, y where P is a set variable not already used.

Since this axiommeans (Sx,Ty)� Px, y, the new system proves Px, y
for precisely the `x, ye in S � T. j

Using the comma as in part (iii) of the proof above, we can speak of
EFS-generated sets of n-tuples.

De�nition.A set S of ordered n-tuples `x,x, . . . ,xne is said to be EFS-
generated if there is an EFS whose theorems of the form Sx,x, . . . ,xn,
for comma-free words x,x, . . . ,xn, are those for which `x,x, . . . ,xne
> S.

We can now contemplate operations on EFS-generated sets of n-
tuples. ¿e most important of these is called existential quanti�cation
(when speaking in terms of properties) or projection (when speaking in
terms of sets).

De�nition. If W(x, . . . ,xk, y, . . . , yl) is a property of (k + l)-tuples,
then the property §x�§xkW(x, . . . ,xk, y, . . . , yl) is an existential
quanti�cation of the propertyW, and the set

�`y, . . . , yle � §x�§xkW(x, . . . ,xk, y, . . . , yl)�

is the corresponding projection of the set

�`x, . . . ,xk, y, . . . , yle �W(x, . . . ,xk, y, . . . , yl)�.

Projection of EFS-generated sets. If W is an EFS-generated set of
(k + l)-tuples, then any projection ofW is EFS-generated.

Proof.Given an EFS forW, let E be a new set variable and add the axiom

Wx,� ,xk, y,� , yl ,� Ey,� , yl . j
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. GENERATING Σ SETS

In section . we classi�ed the sets de�nable in Peano arithmetic (PA) by
means of the formulas de�ning them.We began with equations between
terms involving variables, the constant , and the S, +, and ċ functions,
then combined equations by the Boolean operations ,, -, and  to form
quanti�er-free formulas.

In the present section we follow a similar path, but we enlarge the
class of quanti�er-free formulas by allowing the bounded quanti�ers
(∀x < y) and (§x < y) to occur in them. ¿e properties de�ned by
the new formulas do not in fact include any not de�ned by the old, but
it is useful to have the extra �exibility a�orded by bounded quanti�ers.

In particular, if we de�neΣ formulas to be those obtained by existen-
tial quanti�cation of the new quanti�er-free formulas it becomes easier
to reach our ultimate goal of showing that the EFS-generated sets equal
the Σ sets. ¿e more �exible de�nition of Σ is in fact the one used in
the de�nitive treatment of reverse mathematics, Simpson (). In this
section and the next we prove one direction of the equality: Σ sets are
EFS-generated.

Since we have already shown, in the last section, that the existen-
tial quanti�cation of an EFS-generated set is EFS-generated, it su�ces to
show that the sets de�ned by quanti�er-free formulas are EFS-generated.
We begin with sets de�ned by equations, and the related problem of rep-
resenting functions (and relations) by sets—particularly the S, +, and ċ
functions.

De�nition. A relation R(x,x, . . . ,xn) is EFS-representable if there is
an EFS for the set �`x,x, . . . ,xne � R(x,x, . . . ,xn)�.

EFS-representation of basic relations.¿e relations
(i) S(x) = y, (ii) x+ y = z , (iii) x ċ y = z, (iv) x < y, (v) x B y, and (vi)
x x y
are EFS-representable.

Proof. (i) ¿e relation S(x) = y in dyadic numerals is represented by
Sx, y in the EFS:

S,
S, 
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Sx,x
Sx, y� Sx, y

¿ese axioms are clearly true when Sx, y is interpreted as S(x) = y and
x, y are dyadic numerals. So the instances of Sx, yoccuring as theorems
of this EFS express true instances of S(x) = y. To see why all instances
occur as theorems we show that all dyadic numerals x occur in theorems
Sx, y. ¿e shortest instances x =  and x =  are in the �rst two axioms;
the third axiom allows us to attach a  to the right of any instance of x;
and the fourth axiom (about “carrying ”) allows us to attach a  to the
right of any instance of x.

(ii) Given the EFS for S(x) = y, we obtain an EFS for x + y = z by
adding axioms that implement the inductive de�nition of + (for positive
integers). Writing Ax, y, z to represent x + y = z, suitable axioms are

Sx,u� Ax, ,u (base step)

and (using the “and” symbol , for the moment)

(Ax,v,w , Sv, y, Sw, z)� Ax, y, z. (induction step)

¿e induction step is written o�cially as the axiom

Ax,v,w� Sv, y� Sw, z� Ax, y, z.

(iii) Given the above EFS for S and+, we obtain an EFS for ċ by adding
axioms that de�ne ċ inductively, writingMx, y, z to represent x ċ y = z:

Mx, ,x (base step)

and

(Mx,v,w , Sv, y, Aw,x, z)� Mx, y, z. (induction step)

¿e induction step is written o�cially as the axiom

Mx,v,w� Sv, y� Aw,x, z� Mx, y, z.

(iv) Writing Lx, y to represent x < y, we can generate all correct in-
stances of Lx, y by adding the following axioms to those in (i):

Sx, y� Lx, y
Lx, y� Ly, z� Lx, z
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(v) Writing L′x, y to represent x B y, we get axioms for x B y by
adding the following to those in (i) and (iv):

Lx, y� L′x, y
L′x,x

(vi) ¿e latter axiom (if we wrote it for a di�erent set variable, E say)
de�nes the equality relation x = y. ¿e inequality relation x x y can be
represented by Nx, y if we add the following axioms to those in (iv):

Lx, y� Nx, y
Ly,x� Nx, y j

. EFS FOR Σ RELATIONS

Boolean Combinations of Equations

We �rst wish to use the theorem above to prove that an equation

t(x, . . . ,xk) = t(y, . . . , yl),

where t and t are terms built fromvariables and  by the S,+, and ċ func-
tions, is an EFS-representable relation between x, . . . ,xk, y, . . . , yl. To
do this we need to prove that the composite of EFS-representable func-
tions is itself EFS-representable. An example will su�ce to show how this
is done. Given the relations x + y = z and z = u ċ v we wish to represent
the relation

R(u,v,x, y) � x + y = u ċ v.

We already have an EFS that represents x + y = z by Ax, y, z and an EFS
that represents u ċ v = z by Mu,v, z. ¿en all we have to do is add the
axiom

Ax, y, z� Mu,v, z� Ru,v,x, y.

In general, if Rx, . . . ,xk, z represents the relation t(x, . . . ,xk) = z
and Ry, . . . , yl , z represents the relation t(y, . . . , yl) = z, thenwe can
represent the relation t = t by the relation Qx, . . . ,xk, y, . . . , yl if we
add the axiom

Rx, . . . ,xk, z� Ry, . . . , yl , z� Qx, . . . ,xk, y, . . . , yl .
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We can also represent the relation t x t by writing down the axioms for
Nx, y, then adding

Rx, . . . ,xk,w� Ry, . . . , yl , z� Nw, z.

¿uswe can �nd EFS-representations of both relations t = t and t x t.
Combining this with the EFS for union and intersection of EFS-

generated sets (from section .), we can obtain an EFS for any Boolean
combination of equations between terms; that is, any combination of equa-
tions by means of the connectives ,, -, and  . ¿is is because the equiv-
alences

 (φ,ψ)� ( φ) - ( ψ),
 (φ-ψ)� ( φ) , ( ψ),

allow  signs to be “pushed inward” until they hit equations t = t and
turn them into inequations t x t. At this stage all other connectives
are - or ,, shown to be EFS-representable in section .. Since we can
represent t = t and t x t, we can obtain an EFS for any Boolean
combination of equations, as claimed.

Such Boolean combinations were called quanti�er-free formulas of
PA in section .. But we now wish to expand the concept “quanti�er-
free” to include the bounded quanti�ers (∀x < y) and (§x < y).3 To
avoid confusing the two possible meanings of “quanti�er-free” we will
use the term Σ formula for one built from equations between terms by
applying Boolean operations and bounded quanti�ers.Wewill also show
that the result of applying a bounded quanti�er to an EFS-representable
relation is EFS-representable.

Bounded Quanti�ers

First observe that a bounded existential quanti�er is no problem because

(§y < z)R(x, . . . ,xk, y)� (§y)[R(x, . . . ,xk, y) , y < z].

We know from section . that existential quanti�cation of an EFS-
representable relation is EFS-representable, and R(x, . . . ,xk, y) , y < z
is representable if R is, because y < z is EFS-representable and so is the
intersection of EFS-representable relations.

3¿is includes the quanti�ers (∀x B y), which is equivalent to (∀x < y + ), and
(§x B y), which is equivalent to (§x < y+ ).
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¿us it remains to prove:

EFS-representationof boundeduniversal quanti�cation. If the relation
R(x, . . . ,xk, y) is EFS-representable so is (∀y < z)R(x, . . . ,xk, y).

Proof.We introduce a set variableR< such thatR<(x, . . . ,xk, z) is equiv-
alent to (∀y < z)R(x, . . . ,xk, y). ¿e relation R< vacuously satis�es
R<(x, . . . ,xk, ) because there is no positive integer y < . ¿e relation
also satis�es

[R<(x, . . . ,xk, z) , R(x, . . . ,xk, z) ,w = S(z)]� R<(x, . . . ,xk,w).

¿us, if we write down the axioms for the function S from the previous
section, then add the EFS for R and also the axioms

R<x, . . . ,xk, 
R<x, . . . ,xk, z� Rx, . . . ,xk, z� Sz,w� R<x, . . . ,xk,w

we obtain an EFS that generates all theorems of the form R<x, . . . ,xk, z.
j

Wenow rede�neΣ relations (as stated in the preview to this chapter),
to be the existential quanti�cations of Σ relations of PA and we have:

Corollary. All Σ relations are EFS-generated.

Proof. ¿e Σ relations are those obtained from equations t = t, by
Boolean operations and bounded quanti�cations, where the terms t and
t result from variables and  by applying the S, +, and ċ functions.

¿e theorems of this section show thatΣ relations are EFS-generated,
and hence so are the Σ relations, by the theorem on existential quanti�-
cation in section .. j

. ARITHMETIZING ELEMENTARY FORMAL SYSTEMS

¿e previous sections of this chapter have demonstrated the computa-
tional ability of EFS, by showing that they can represent all the Σ re-
lations of PA. Indeed, the ingredients of Σ relations—the S, +, and ċ
functions, equations and their Boolean combinations, bounded quanti-
�ers, and existential quanti�cation—are “simulated” in a way that closely
tracks their meaning.
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When it comes to demonstrating the converse—that Σ relations of
PA can “simulate” the workings of EFS—there are some technical di�-
culties that make the simulation harder to track. Because of this, we will
carry out only the most fundamental parts of the simulation in detail,
and describe the overall process in broader terms, so that the reader has
a better chance of seeing the big picture. (Even so, there are some messy
details, which may best be skipped at �rst reading.)

Words and Numbers

Aswe said in section ., the �rst step in arithmetizing elementary formal
systems is to encode strings of letters (or “words”) by dyadic numerals.
¿ese numerals have the potential to encodewords in an arbitrary alpha-
bet, since we can encode di�erent letters by the numerals , , ,
and so on. ¿e hard part is to re�ect natural operations on words by op-
erations on numbers, using only the language of PAwith its built-in S, +,
and ċ functions. ¿e most fundamental operation on words x and y is to
form the word xy, the concatenation of x and y, by writing down x and
then y to its right.

If x and y are the numbers whose binary numerals are x and y re-
spectively, we let x �y denote the number whose binary numeral is xy.
We can de�ne the numerical concatenation function � via the following
series of de�nitions. Notice that these de�nitions use at most bounded
quanti�ers, hence they are Σ as de�ned in the previous section.

. First we de�ne the relation “x divides y” by

x div y� (x = ) - (§z < y)(x ċ z = y).
. Next

x is a power of  � (∀y < x)[(ydiv x ,  < y)�  div y].
. ¿en, if l(x) = length of dyadic numeral for x, we have

y = l(x)� y is a power of  , [y−  B x B  ċ (y− )],
because, if y is a power of , y−  is the smallest number with the
same length as y, and  ċ (y− ) is the largest.

. Finally,

x �y = z� x ċ l(y) + y = z
� (§v < z)(§w < z)[v = l(y) , x ċ v = w ,w + y = z].
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Finite Sequences

Using the numerical concatenation function � we can de�ne numerical
properties that re�ect properties of words relevant to the operations of
elementary formal systems. ¿ese include

“x is an initial segment of y,”
“x is a �nal segment of y,”
“x is a subword of y,”

“x is of the form u� v,”

and all quanti�ers occurring in the de�nitions can be bounded for the
same reasons as in the four de�nitions above.

¿en for a given EFS it is possible to de�ne arithmetical relations

• Axiom(x) that re�ects “x is an axiom,”
• x subst y that re�ects “x gives y by substitution,”
• x, ymodusponens z that re�ects “x, y give z by modus ponens,”

using only bounded quanti�ers. But to re�ect the property “x is a theo-
rem”weneed to state the existence of a�nite sequence, each termofwhich
is either an axiom or a consequence of earlier terms. Such a sequence is
a “proof,” and to be a theorem is to be the last term of a proof.

¿us another prerequisite for arithmetizing computation is a device
for encoding and decoding �nite sequences of positive integers. It is clear
that a �nite sequence ofwordsw,w, . . . ,wk is easily encoded by a single
word �w�w���wk�with the help of a new symbol � as a “separator.”
We can then encode the sequence by a binary numeral and extract infor-
mation from the corresponding number with the help of the � function.

However, there is an arithmetically simpler way to encode a �nite se-
quence of numbers by a single number, due to Gödel (). ¿is is by
means of the Gödel β-function, which is easily de�ned in terms of the
remainder function:

rem(a,b) = r� (§q < a)(a = bq+ r , r < b).

¿e de�nition of the β-function is by the quanti�er-free formula:

β(c,d, i)=x� rem(c,  + (i + ) ċ d)=x
� (§q < c)[c=( + (i + ) ċ d) ċ q+ x , x <  + (i + ) ċ d].

Now we can represent any �nite sequence of positive integers x,x,
. . . ,xn as the sequence of values β(c,d, i) for suitable c,d, and for
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i = ,, . . . ,n. ¿is is a consequence of the Chinese remainder theorem
from elementary number theory, according to which any sequence of
positive remainders xi is attainable when a suitable c is divided by a suit-
able  + (i + )d.4

EFS-generated Sets are Σ

¿anks to the β-function,we can express “there is a sequence x,x, . . . ,xn”
by the formula:

(§c,d,n)(∀i B n)[β(c,d, i) = xi].

Consequently, “there is a proof ” is expressed by the Σ formula saying
that there is a sequence, each term of which is either an axiom or the
consequence of previous terms by substitution or modus ponens:

(§c,d,n)(∀i B n)[Axiomβ(c,d, i)-
(§j< i)(β(c,d, j) subst β(c,d, i))-
(§j, k < i)(β(c,d, j),β(c,d, k)modusponens β(c,d, i))].

And �nally, “x is a theorem” is expressed by the Σ formula which adds
the clause β(c,d,n) = x, saying “x is the last term in the sequence,” to
the formula above:

(§c,d,n)[β(c,d,n) = x,
(∀i B n)[Axiomβ(c,d, i)-

(§j< i)(β(c,d, j) subst β(c,d, i))-
(§j, k < i)(β(c,d, j),β(c,d, k)modusponens β(c,d, i))]].

¿erefore, since an EFS-generated set W of words w corresponds, by
de�nition, to the set of theorems Pw of some EFS, it follows thatW is
Σ .

. ARITHMETIZING COMPUTABLE ENUMERATION

In this section we are going to formalize the idea that a nonempty Σ set
S can be “listed” in a computable fashion. To be precise, we show that

4Smullyan takes the concatenation route to �nite sequences because he wishes to
avoid using number theory. However, it is not clear to me where to draw the “number
theory” line. For example, we are using properties of divisors in our de�nition of “x is a
power of .”
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there is a function fwhose range is S—so f(), f(), f(), . . . is a “list”
of the members of S—and f is computable in the sense that the relation
f(m) = n can be expressed by both a Σ and a Π

 formula of PA.¿is is
the arithmetical equivalent of being computably enumerable and having
a computably enumerable complement.

Arithmetizing Recursion

¿emain problem in arithmetizing the de�nition of f is that the de�ni-
tion is recursive; that is, f(m+) is de�ned in terms of f(m). So, to allow
the arithmetization to go as smoothly as possible, we �rst explain how to
arithmetize (a special case of) recursion.

De�nition. A function F � N � N is said to be representable in PA, or
arithmetically representable, if the relation F(n) = m is equivalent to a
formula ψ(m,n) in the language of PA.

Arithmetizing a recursion. If F is arithmetically representable and f is
de�ned by f() = x and f(m + ) = F(f(m)), then f is arithmetically
representable.

Proof.¿e idea is that f(m) is the last term in a sequence x,x, . . . ,xm,
where x = f() and, for each i < m, xi+ = F(xi). We can express
the existence of such a sequence with the help of the Gödel β-function
from the previous section. Namely, xi = β(c,d, i) for certain c,d, so the
statement that f(m) = n becomes

(§c,d)[β(c,d,) = x , (∀i < m)(β(c,d, i + )
= F(β(c,d, i))) , β(c,d,m) = n].

Since β and F are arithmetically representable, we now have an arith-
metical formula representing f. j

We note at this stage that the only explicit quanti�ers in this formula
are the § quanti�ers in front. So, provided that F is itself Σ , we will have
a Σ formula for the relation f(m) = n. We will also have a Σ formula
for the relation f(m) x n, because this requires only that we change
the “= n” at the end of the formula to “x n.” ¿en, since f(m) = n is
equivalent to  f(m) x n we can also express the relation f(m) = n by
the negation of the Σ formula for f(m) x n; that is, by a Π

 formula.



ARITHMETIZATIONOF COMPUTATION ■ 

Computable Enumeration

We begin with a couple of elementary observations that allow us to work
with simple hypotheses.

First, we observe that any Σ formula §m�§mk φ(m, . . . ,mk,n),
where φ is Σ, is equivalent to one with a single § quanti�er, namely

§m φ(Pk (m), . . . ,Pkk(m),n),

where Pk , . . . ,Pkk are the projection functions for the k-tupling function
Pk. All of these functions come from the pairing function P of section
.. ¿us the k-tupling functions are

P(m,m) = P(m,m),
P(m,m,m) = P(m,P(m,m)),

P(m,m,m,m) = P(m,P(m,P(m,m))),

and so on. And when m = P(m,m,m), for example, the projection
functions are

P (m) = m, P(m) = m, P(m) = m.

¿e pairing function P is Σ because (by section .)

P(x, y) = z�  ċ z =  ċ x + (x + y)(x + y+ ),

and hence so are its projection functions because

P(z) = x� (§y B z)[P(x, y) = z], P(z) = y� (§x B z)[P(x, y) = z].

It follows that all of the functions Pk,Pk , . . . ,Pkk are Σ

, so

§m φ(Pk (m), . . . ,Pkk(m),n) is a Σ formula.

¿us, without loss of generality, we can assume that any Σ set S is
de�ned by

n > S� §m φ(m,n),
where φ is a Σ formula.

Second, if S is nonempty, but �nite, we can choose a φ(m,n) that
holds for in�nitely many pairs `m,ne. Namely, if S = �n, . . . ,nl� then

n > S� §mφ(m,n), where φ(m,n) = §m[m = m,(n = n-�-n = nl)].
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Computable enumeration of a Σ set. If S is a nonempty Σ set, then S
is the range of a function g that is both Σ and Π

 .

Proof. By the remarks above we can assume that

n > S� §mφ(m,n),

where φ is a Σ formula satis�ed by in�nitely many pairs `m,ne. We �rst
consider a function f whose range consists of the numbers t = P(m,n)
such that φ(m,n). Namely, de�ne f recursively by

f() = least t such that φ(P(t),P(t)),
f(s + ) = least t A f(s) such that φ(P(t),P(t)).

In other words, f is de�ned recursively by the equations f() = t
(say) and f(s + ) = F(f(s)), where

F(u) = v� v = least t A u such that φ(P(t),P(t))
� v A u , φ(P(v),P(v)) , (∀i < v)(i A u�  φ(P(i),P(i))).

¿us F has a Σ de�nition and so it follows from arithmetization of re-
cursion that f is both Σ and Π

 .
Finally, since fhas range �t � φ(P(t),P(t))� = �P(m,n) � φ(m,n)�

and P(P(m,n)) = n, it follows that the function

g(t) = P(f(t))

has range �n � §m φ(m,n)�, as required. j

. ARITHMETIZING COMPUTABLE ANALYSIS

Now that we know the arithmetical meaning of computably enumerable
set, computable set, and computable function, we can see how to modify
PA axioms to make a system for computable analysis.

First, there should be an axiom (schema) asserting the existence of
computable sets. ¿at is, if φ is a property of natural numbers that can
be expressed in both Σ and Π

 forms, then we have the axiom

§X ∀n [n > X� φ(n)], (RCAx)

called the recursive (meaning computable) comprehension axiom. RCAx
is really an axiom schema because there are in�nitely many properties
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φ expressible in both Σ and Π
 forms. Note also that φ can contain set

variables other than X. ¿is allows us to apply computable operations to
arbitrary sets. For example, RCAx allows us to conclude that if Y is a set,
so is the collection Z of even numbers in Y, because

n > Z� n > Y , (§m < n)(n =  ċm)

and the condition on the right is both Σ and Π
 .

Second, we restrict the induction axiom (schema) of PA,

[φ() , ∀n (φ(n)� φ(n + ))]� ∀n φ(n),

to Σ formulas φ. We call the latter scheme Σ induction. ¿e system ob-
tained from PA by restricting induction to Σ induction and adding the
recursive comprehension axiom is called RCA, from the initial letters
of “recursive comprehension axiom.”5

As we have seen in chapter , there are many noncomputable sets and
functions, so we expect RCA to have limited scope. Indeed, we will see
that RCA fails to provemany of the basic theorems of analysis. However,
RCA is surprisingly good at proving equivalences between important
theorems. For example, RCA can prove that the Heine-Borel theorem is
equivalent to the extreme value theorem for continuous functions, even
though it is unable to prove either of these theorems outright.¿ismakes
RCA a good base theory for analysis, because the job of a base theory is
to give “elementary” equivalence proofs between theorems that are not
themselves “elementary.”

Example of a Proof in RCA

¿e proof in the previous section, on the computable enumeration of a
Σ set, translates into a proof in RCA of the following theorem.

5¿e word “recursive” here is a relic of the time (roughly –) when all com-
putable functionswere called “recursive.” Today theword “computable” is preferredwhen
the general computation concept is meant, and “recursive” is mostly con�ned to de�ni-
tions (like that in the previous section) where the value of a function is determined by
its previous values. But we seem to be stuck with the word “recursive” in the “recursive
comprehension axiom.”
¿e subscript  in RCA also has a history. Friedman () proposed a system RCA

with induction for all arithmetical formulas φ, but Friedman () found that Σ induc-
tion usually su�ces, hence the name change. Σ induction is preferred because we want
a base system to be as elementary as possible.
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Realizing aΣ conditionby a function.For anyΣ condition§mφ(m,n)
there is a function g � N� N such that §m [g(m) = n]� §m φ(m,n).
Proof. Given φ(m,n) we can proceed, as in the previous proof, to write
down the de�nition of a function g whose values are the n such that
§m φ(m,n). ¿e function g can be de�ned by both a Σ and a Π

 for-
mula, as we observed, so g exists by the recursive comprehension axiom.

¿e �rst step of the previous proof, recursively de�ning a function f
whose values are the numbers t = P(m,n) such that φ(m,n), can now
be justi�ed by Σ induction. ¿us we have a proof in RCA that g exists
and that §m [g(m) = n]� §m φ(m,n). j

Remember that when RCA proves existence of a function g this
means that the set of ordered pairs `n, g(n)e is computable. We have not
proved in RCA that the set �n � §m φ(m,n)�, the range of g, exists. In-
deed, we cannot do this in RCA when �n � §m φ(m,n)� is computably
enumerable but not computable.

To claim the existence of the set �n � §m φ(m,n)� we would need
more than recursive comprehension; we would need Σ comprehension.
A system which has Σ comprehension, called ACA, is the subject of
our next chapter.

¿eMinimal Model of RCA

¿e recursive comprehension axiom means that any model of RCA in
which the symbols ,S(),SS(), . . . have their usual interpretation as
the natural numbersmust contain all the computable sets, since these are
precisely the sets de�nable by both Σ andΠ

 formulas. So the latter sets
are necessarily in any model by the recursive comprehension axiom. It is
also su�cient to have only the computable sets in the model, since any
set de�nable from computable sets by a condition that is both Σ andΠ


is itself computable.

¿us theminimal model of RCA consists of the natural numbers (in-
terpreting the number variables) and the computable sets (interpreting
the set variables). It follows that any theorem of RCA must hold in the
minimal model. ¿is is why theorems that involve the existence of non-
computable sets cannot be proved in RCA.

For example, RCA cannot prove the existence of the range of every
function g, because there is a function g that is computable (and hence
in the minimal model) with a noncomputable range (hence not in the
minimal model).
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Arithmetical Comprehension

If we wish to develop analysis in a system based on PA with set vari-
ables, themost obvious set existence axiom to use is one called arithmeti-
cal comprehension. ¿is axiom asserts the existence of a set X of natural
numbers for each property φ de�nable in the language of PA.

More precisely, if φ(n) is a property de�ned in the language of PA
plus set variables, but with no set quanti�ers, then there is a set X whose
members are the natural numbers n such that φ(n). In symbols,

§X∀n[x > X� φ(n)]. (*)

Since we assert (*) for all such formulas φ, the arithmetical comprehen-
sion axiom is really an axiom schema.

¿e reasonwe allow set variables in φ is to enable sets to be de�ned in
terms of “given” sets, asmentioned in section ..¿e reasonwedisallow
set quanti�ers inφ is to avoid de�nitions inwhich a set is de�ned in terms
of all sets of natural numbers (and hence in terms of itself).

¿e system consisting of PA plus arithmetical comprehension (*) is
called ACA. ¿is system lies at a remarkable “sweet spot” among axiom
systems for analysis. It is strong enough to prove all the basic theorems
of analysis—as we will see—yet of precisely the same strength as PA in
proving theorems of pure number theory (that is, theorems not involving
set variables).

Also remarkable is the fact that arithmetical comprehension does not
merely imply the basic theorems of analysis. It is actually equivalent to
some of them, and the equivalences can be proved in the weak system
RCA of “computable analysis” introduced at the end of the previous
chapter.
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. THE AXIOM SYSTEMACA

ACA has the same axioms as PA, except that PA induction is replaced
by set variable induction (previously mentioned in section .),

∀X [[ > X , ∀n(n > X� n +  > X)]� ∀n(n > X)] ,

and the set existence axiom (schema) is arithmetical comprehension:

§X(n > X� φ(n)) (ACAx)

where φ(n) is any formula with no set quanti�ers and in which X is not a
free variable. In particular, if φ(n) has no set variables—so it is a formula
of PA—then the set variable induction axiom above holds for the set X
of n with property φ(n), so

[φ() , ∀n(φ(n)� φ(n + ))]� ∀nφ(n).

¿us, in the presence of arithmetic comprehension, set variable induc-
tion implies PA induction, and therefore all theorems of PAcanbe proved
in ACA. In section . we explain amore surprising converse fact about
ACA: its theorems not involving set variables are theorems of PA.

¿us the ability of ACA to prove facts about sets of natural numbers
(and hence about real numbers and functions) does not help at all in
proving facts about the natural numbers themselves. However, it does
enable ACA to prove the basic theorems of analysis, as we will see in
the sections below.1

¿eMinimal Model of ACA

Since the axioms of ACA include the Peano axioms, anymodel of ACA

includes objects denoted by ,S(),SS(), . . .with the properties of the
natural numbers. Conversely, these objects su�ce to satisfy the Peano
axioms among those of ACA.

In addition, a model of ACA must include enough subsets of the set
of objects denoted by ,S(),SS(), . . . to satisfy the arithmetic com-
prehension schema (ACAx). Since there is an instance of (ACAx) for

1¿e subscript  in ACA re�ects its history as a weakening of a predecessor system
called ACA, in which the formula φ in (ACAx) was allowed to have set quanti�ers. ACA
does not lie at such a “sweet spot” as ACA, because ACA is stronger than PA in proving
theorems of pure number theory. We give an example of such a theorem in section ..
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each PA formula φ(n), these subsets include all the arithmetically de-
�nable sets. Conversely, the arithmetically de�nable sets su�ce to satisfy
the axioms of ACA. ¿ey satisfy arithmetic comprehension, even when
the de�ning formula φ(n) contains set variables, because a set de�ned in
terms of other arithmetically de�nable sets is itself arithmetically de�n-
able. And they satisfy set variable induction because, as explained above,
when the X in the induction axiom denotes an arithmetically de�nable
set, we have an instance of PA induction.

¿us the minimal model of ACA consists of the natural numbers
together with all arithmetically de�nable sets of natural numbers.

. Σ ANDARITHMETICAL COMPREHENSION

In this section we prove that arithmetical comprehension follows from a
seemingly weaker comprehension axiom: Σ comprehension:

§X(n > X� φ(n))

whereφ(n) is aΣ formula inwhichX is not a free variable. (¿us any set
variables in φ are di�erent from X, and they are not quanti�ed.) What
makes this result possible is the fact that the formula φ(n) in Σ can
contain set variables, so sets can be de�ned in terms of previously de�ned
sets.

From Σ to arithmetical comprehension. Each instance of arithmetical
comprehension is provable by Σ comprehension.

Proof.We know from section . that each arithmetical formula is Σn for
some n. So it su�ces to prove, by induction on n, that each Σn instance
of arithmetical comprehension is provable by Σ comprehension.

¿e base step n =  is immediate by Σ comprehension, so it remains
to show how to get from a Σk set to a Σ


k+ set by Σ


 comprehension.

Let φ(n) = §l∀mψ(l,m,n) be a Σk+ formula, so §m ψ(l,m,n) is
Σk. It follows, by the induction hypothesis, that the set

Y = �`l,ne � §m ψ(l,m,n)�

is obtainable by Σ comprehension. Notice `l,ne ~> Y� ∀mψ(l,m,n),
so the set

X = �n � φ(n)�
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is de�nable by the formula

n > X� §l∀mψ(l,m,n)
� §l(`l,ne ~> Y).

¿e latter formula is Σ with the free set variable Y. ¿erefore, since Y is
obtainable by Σ comprehension, so is X. j

Σ Comprehension and the Range of Functions

¿e connection between arithmetical comprehension and analysis is es-
tablished by showing Σ comprehension equivalent (in RCA) to the fol-
lowing proposition:

Range existence.¿e range of any injective function f � N� N exists.

It is clear that Σ comprehension implies range existence, because the
range R of f is de�nable from f by the Σ condition

n > R� §m[f(m) = n].
However, the converse is quite subtle. It depends on the arithmetization
of recursion we established in section . and the recursive comprehen-
sion axiom of section . (we cannot expect to get Σ comprehension
without assuming some form of comprehension).

Range existence� Σ comprehension. If the range of any injective func-
tion f � N� N exists, then Σ comprehension holds.

Proof. As we saw in section ., we can prove in RCA the existence of
a function whose values satisfy a given Σ condition. So, if the range of
any function exists, the set of values satisfying any Σ condition exists.

¿at is, Σ comprehension holds. j

Σ Induction and Systems Weaker than ACA

In later chapters we will compare ACA with systems having weaker set
existence axioms and also the weaker form of induction: Σ induction:

(φ() , (φ(n)� φ(n + )))� ∀nφ(n), where φ is a Σ formula.

In ACA, thanks to arithmetical comprehension, Σ induction implies
induction for any arithmetical φ, but in systems with weaker compre-
hension this is not the case.¿e two weaker systems we will be interested
in are:
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• RCA, whose set existence axiom schema asserts only the existence
of computable sets, and

• WKL, whose set existence axiom schema asserts, in addition to
the existence of computable sets, the existence of in�nite paths in
in�nite binary trees (the weak Kőnig lemma).

RCA proves only a few basic theorems of analysis, notably the inter-
mediate value theorem. However RCA is strong enough to prove many
interesting equivalences between set existence axioms and theorems of
analysis.

We will prove several such equivalences in the present chapter, and
in the next chapter say more about why the proofs can be carried out
in RCA. In fact, we have already proved one implication in RCA: the
proof that range existence� Σ comprehension. As we observed above
and in section ., this is because the proof assumes only the existence
of computable sets and Σ induction. Roughly speaking, an implication
A� B is provable in RCA if the objects asserted to exist in B can be
computed from the objects asserted to exist in A.

. COMPLETENESS PROPERTIES IN ACA

In this section we see how ACA captures the fundamentals of analy-
sis, by proving arithmetical comprehension equivalent to the following
completeness properties of R. ¿ese results were announced by Fried-
man ().

. (Sequential) Bolzano-Weierstrass theorem.
Any bounded in�nite sequence of real numbers has a convergent sub-
sequence.

. (Sequential) least upper bound principle.
Any bounded sequence of real numbers has a least upper bound.

. Cauchy convergence criterion.
A sequence x,x,x, . . . is convergent if it has the property that, for
any ε A , there is an n such that Sxm − xnS < ε for all m A n.

. Monotone convergence theorem.
Any bounded monotonic sequence is convergent.

¿e proofs reveal the “arithmetical content” of these famous theorems.
To streamline the proofs we assume that real numbers, sequences of

real numbers, sequences of closed intervals, and so on, are encoded by



 ■ CHAPTER 

sets of natural numbers as explained in chapter . We can then assert the
existence of various sequences de�ned by arithmetical conditions (and
the objects they may determine—for example, a real number given by a
sequence of nested closed intervals whose lengths tend to zero) by arith-
metical comprehension. ¿e equivalences will be proved via the impli-
cations shown in �gure ..

Arithmetical
comprehension

Sequential B-W

Cauchy
criterion

Monotone
convergence

Sequential lub

Ô�
Ô�
Ô�Ô�Ô

�

Ô�

Figure . : Implications between completeness properties

Arithmetical comprehension� sequential Bolzano-Weierstrass.

Proof. Suppose that x,x,x, . . . is a sequence of real numbers, and as-
sume without loss of generality that each xi > [, ] = I. To �nd a con-
vergent subsequencewe bisect I, choose the rightmost half I containing
in�nitely many xi, and repeat the process in I. ¿is de�nes a sequence
of intervals

Ik = [f(k) ċ −k,(f(k) + ) ċ −k],
where

f(k) = greatest j< k such that jċ −k B xi B (j+ ) ċ −k

for in�nitely many i.

¿is de�nition is arithmetical, so f (hence the sequence I, I, I, . . .)
exists by arithmetical comprehension. Also the Ik are nested and Ik has
length −k, by a Σ induction, so this sequence of intervals de�nes a real
number x. Now from the sequences x,x,x, . . . and I, I, I, . . .we de-
�ne (again, arithmetically)

xnk = �rst member of x,x,x, . . . in Ik with nk A nk−.

And this sequence converges, to the point x de�ned by the intervals Ik.
j
Sequential Bolzano-Weierstrass� Cauchy criterion.
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Proof. Suppose that the sequence x,x,x, . . . satis�es the Cauchy crite-
rion

(∀ε A )§n∀m(m A n� Sxm − xnS < ε). (*)

¿en the sequence is bounded and hence has a convergent subsequence
by Bolzano-Weierstrass.

¿e limit x of this subsequence xn ,xn ,xn , . . . is necessarily the limit
of x,x,x, . . . . Because if xnk is within distance ε of x, then all xm with
m A nk are within distance ε of x by (*), hence the limit of x,x,x, . . .
exists and equals x. j

Cauchy criterion�monotone convergence.

Proof.¿is holds because a monotone sequence that does not satisfy the
Cauchy criterion is unbounded. To see why, suppose we have ε A  for
which there is no n such that xm − xn < ε for all m A n. In that case,
for any n there is an m A n with xm − xn A ε (assuming our monotone
sequence is increasing). By searching for larger and larger n we �nd

xn < xm < xn′ < xm′ < xn′′ < xm′′ < � ,

with
xm − xn C ε, xm′ − xn′ C ε, xm′′ − xn′′ C ε, � ,

so that the sequence x,x,x, . . . grows beyond all bounds.
¿us a bounded increasing sequence satis�es the Cauchy criterion,

and hence is convergent (and similarly for a bounded decreasing
sequence). j

Monotone convergence� arithmetical comprehension.

Proof. It su�ces to prove that, for any injective function f � N � N,
the range of f exists, because this implies Σ comprehension (and hence
arithmetical comprehension) by section ..

Given an injective function f � N � N we will prove that the range
of f exists, in the sense that we can compute it from f. We �rst compute
the bounded increasing sequence c, c, c, . . ., where2

cn =
n

Q
i=

− f(i).

2Readers will notice that this is exactly the same construction that we used in section
. to construct a computable sequence with a noncomputable limit.
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Monotone convergence gives the existence of

c = lim
n�ª

=
ª

Q
i=

− f(i).

And from c we can compute the set of natural numbers n in the range of
f because

n > range of f� nth binary digit of c is . j

Arithmetical comprehension� sequential least upper bound.

Proof. Suppose that x,x,x, . . . is a bounded sequence, for which we
can assume as usual that each xi > [, ] = I. We let I be the rightmost
half of I containing some xi, and in general

Ik+ = rightmost half of Ik containing some xi.

¿en, as in proving that arithmetical comprehension � Bolzano-
Weierstrass, we �nd that the sequence I, I, I, . . . and its common point
x exists by arithmetical comprehension.

It follows from the de�nition of the Ik and x that each xi B x but that,
if y < x, then y < some xi. ¿us x is the least upper bound of the xi. j
Sequential least upper bound�monotone convergence.

Proof. ¿is is because the least upper bound of a monotone increasing
sequence is its limit. And a monotone decreasing sequence then has a
limit by considering negatives. j

. ARITHMETIZATIONOF TREES

In chapter  we found that many basic theorems of analysis follow from
an in�nite bisection process. We noted in section . that this construc-
tion re�ects theweakKőnig lemma, stating that an in�nite binary tree has
an in�nite path.¿eweak Kőnig lemma is so called because it is a special
case of theKőnig in�nity lemma, stating that an in�nite �nitely branching
tree has an in�nite path. In the next section we prove the König in�nity
lemma in ACA. ¿e proof is quite simple, but to pave the way for it we
have to �nd suitable encodings of trees by sets of positive integers.¿ere
are two natural ways to do this: one speci�c to binary trees and another
for trees in general.
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Both ways encode each vertex of the tree by a �nite sequence of posi-
tive integers, with the “top” vertex being encoded by the empty sequence,
and every other vertex v being encoded by a sequence `n, . . . ,nk−,nke,
where `n, . . . ,nk−e encodes another vertex of the tree (the vertex
“above” v). In section . we saw two ways to encode �nite sequences:

• Encoding “letters” a,a,a, . . . by the dyadic numerals , ,
, . . . and stringing letters together by the concatenation func-
tion �.

• Encoding a sequence of positive integers n,n, . . . ,nk by the val-
ues of the Gödel β function β(c,d, i) for certain c,d, and i = ,,
. . . , k.

Both ways are usable, though the former seems preferable, since concate-
nation is an integral part of the de�nition of tree, and we have already
de�ned the function � for dyadic numerals.

Indeed, for binary trees we can represent vertices by arbitrary dyadic
numerals. ¿e complete binary tree C has vertices labelled as shown in
�gure . (which is the same as �gure . but with dyadic rather than
binary labels). And an arbitrary binary tree B is a subtree of C; that is, B
is a set of dyadic numerals with the property that if u� > B or u� > B
then u > B.

 

  

    

Figure . : ¿e complete binary tree of dyadic numerals

De�nitions. A tree is a set T of �nite sequences (appropriately coded by
dyadic numerals) of positive integers with the property that
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`n, . . . ,nk−,nke > T� `n, . . . ,nk−e > T.

T is �nitely branching if, for each `n, . . . ,nk−e > T there are only
�nitely many nk such that `n, . . . ,nk−,nke > T. Vertex v is an extension
of vertex u if u = `m, . . . ,mke and v = `m, . . . ,mk,n, . . . ,nle for some
n, . . . ,nl.

An in�nite path in a treeT is an in�nite sequence `n,n,n, . . .e such
that each `n,n, . . . ,nke > T.

For example, in the complete binary tree  is an extension of , and
� is the le most in�nite path in the tree.

. THE KŐNIG INFINITY LEMMA

¿e strength of the Kőnig in�nity lemma can be measured by showing
that it is equivalent to arithmetical comprehension, as we will do in this
section. ¿eir equivalence was announced by Friedman (). Surpris-
ingly, the weak Kőnig lemma really is weaker, despite its seemingly sim-
ilar proof. In both versions one �nds an in�nite path in a tree by repeat-
edly choosing one of the �nitely many edges that leads into an in�nite
part of the tree.

Although it is not obvious why, it makes a di�erence whether the
choice is between two edges or an arbitrary �nite number. ¿e weak
Kőnig lemma will be studied in the next chapter, where we will �nd its
most interesting equivalents.

Kőnig in�nity lemma. If T is an in�nite, �nitely branching tree, then T
has an in�nite path.

Proof.We represent T, as in the previous section, by a set T of �nite se-
quencesuof natural numbers. Eachmemberu > T represents a vertex, so
the initial segments of u also belong to T and they represent the vertices
above u on the unique path to the top (empty) vertex. ¿e possible suc-
cessors of u = `n, . . . ,nk−e are the sequences `n, . . . ,nk−,nke, where
nk > N, and we order them by the size of nk.

¿e assumption thatT is �nitely branchingmeans that eachu > T has
only �nitelymany successors.¿e in�nity lemma is proved by recursively
choosing successivemembers of an in�nite sequence `n,n,n, . . .e such
that each `n, . . . ,nke > T.
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Step . Let `ne be the least of the �nitely many vertices below the top
(empty) vertex that has in�nitely many extensions in T.

Step k. Assuming that u = `n, . . . ,nk−e is a vertex with in�nitelymany
extensions in T, choose the successor `n, . . . ,nk−,nke of u that
is least among the �nitely many successors of u having in�nitely
many extensions in T.

Using the arithmetization of trees from the previous section, and arith-
metical de�nability of the property of having in�nitely many extensions,
we can make a recursive (and hence also arithmetical, by section .)
de�nition of the sequence `n,n,n, . . .e. Its existence, and hence that
of an in�nite path, therefore follows by arithmetical comprehension. j

¿is shows that the Kőnig in�nity lemma is provable in ACA. Con-
versely, we have the theorem:

Kőnig in�nity lemma� arithmetical comprehension.

Proof. As in the proof that monotone convergence implies arithmetical
comprehension it su�ces to prove that the Kőnig in�nity lemma implies
that the range of any function f � N � N exists, because arithmetical
comprehension then follows by sections . and ..

¿us it remains to show that, given a function f � N � N, we can
compute the range of f (that is, decide for given n whether n > range f)
with the help of the Kőnig in�nity lemma.We do this by computing from
f a �nitely branching tree Tf whose only in�nite path σ is de�ned by

σ(i) =
¢̈̈
¦̈
¤̈

 if i ~> range f
m +  if f(m) = i.

From σ we can decide membership in range f, because

i > range f� σ(i) A .

So if σ exists then range f exists—and we will show that σ exists by the
Kőnig in�nity lemma.

As explained in the previous section, Tf has a top vertex equal to the
empty sequence, and below it vertices that are sequences `m,m, . . . ,mke
of natural numbers. We decide whether `m,m, . . . ,mke > Tf by the
following criterion:

`m,m, . . . ,mke > Tf� (∀i, jB k)[mi = � f(j) x i] and
(∀i B k)[mi A � f(mi − ) = i]. (*)
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For example, if `,,,e > Tf this means that , , > range f, because
f() = , f() = , f() = , and that  ~> range f unless f(m) =  for
somem A . More generally, we notice the following:

. If `m,m, . . . ,mke > Tf then mi =  only if f(m) = i, if at all, for
somem A k.

. If `m,m, . . . ,mke > Tf and l < k then `m,m, . . . ,mle > Tf,
because if (*) holds for k it also holds for l < k. ¿us Tf is a tree.

. Since all quanti�ers in (*) are bounded, (*) is decidable from f, so
Tf exists by recursive comprehension.

. Tf is �nitely branching, because each vertex `m,m, . . . ,mke > Tf
has at most two successors, `m,m, . . . ,mk,e and `m,m, . . . ,
mk,m + e, the latter if k +  = f(m) for somem A k.

. Each initial segment `σ(),σ(), . . . ,σ(k)e of σ is in Tf because it
satis�es condition (*). ¿us Tf is in�nite, and hence it contains an
in�nite path by the Kőnig in�nity lemma.

It remains to show that σ is the only in�nite path in Tf. To do this it
su�ces to show that, if

`m,m, . . . ,mke x `σ(),σ(), . . . ,σ(k)e,

then all paths through `m,m, . . . ,mke eventually terminate. We can
assume, without loss of generality, that mk x σ(k) and that the preced-
ing terms of both sequences agree. ¿is can happen only if mk =  and
f(m) = k only for some m A k, in which case σ(k) = m + . But then
all extensions of `m,m, . . . ,mke of length greater than m will fail to
satisfy condition (*), and hence they will not be in Tf. j

It is worth noting that the tree Tf in the above proof is actually a
binary tree, since each vertex has at most two successors. So it might
seem that we need appeal only to the weak Kőnig lemma about in�nite
paths in binary trees.However, to construct Tfwehave towork in the tree
of all natural number sequences, because we cannot foresee how large an
mmay be needed to obtain a given number i as a value f(m). We cannot
construct Tf (or anything similar) inside the complete binary tree.

Since arithmetical comprehension implies the Kőnig in�nity lemma,
and hence the weak Kőnig lemma, all the classical theorems provable
from the weak Kőnig lemma are theorems of ACA. In the next chapter
we see that the best known of these theorems—the sequential Heine-
Borel theorem, uniform continuity, and extreme value theorems—can
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be proved equivalent to the weak Kőnig lemma in RCA. Hence they are
best placed in a weaker system,WKL, which has the weak Kőnig lemma
as its set existence axiom.

Before leaving ACA, however, it is worth mentioning another im-
portant area of mathematics which depends on the full strength of arith-
metic comprehension.

. RAMSEY THEORY

Ramsey theory is a large area ofmathematics concernedwith �nding “or-
der within disorder” in both �nite and in�nite structures. It originated in
the paper Ramsey (), on logic, but has since becomepart of combina-
torics. In this section we will sketch some basic results of Ramsey theory
and describe their relation to ACA. A �nite example which illustrates
the kind of “order” discovered by Ramsey theory is the following: in any
group of six people there are either three who all know each other or three
who do not know each other.

To prove this “baby Ramsey theorem” we represent the six people by
vertices of a graph, joining two vertices by a black edge if the correspond-
ing people know each other and by a gray edge if they do not. Figure .
shows one such “acquaintance graph.”

Figure . : An acquaintance graph for six people

We wish to show that there is always a monochromatic triangle (all
black or all gray). To see why this triangle exists, consider any vertex v
of the graph. It is the endpoint of �ve di�erent edges, so at least three of
these edges must have the same color, say black. Now look at the other
ends, v,v,v, of the three edges (�gure .).

If any two of v,v,v are connected by a black edge, this will complete
a black triangle with the black edges already present. And if none of the
three edges are connected by a black edge, then v,v,v are the vertices
of a gray triangle.



 ■ CHAPTER 

v

v

v

Figure . : Typical vertex of the graph

Ramsey theory becomes intertwined with reverse mathematics when
we consider in�nite vertex setsX b N.¿e complete graphKX has the ver-
tex set X and an edge between any two members of X. ¿en an example
of what we can prove is:

In�nite Ramsey theorem for pairs. If the edges of KN are colored by a
�nite number of colors, then KN contains a monochromatic KX, where X
is an in�nite subset of N.

Proof. Choose any v > N and consider the in�nitely many edges with
v at one end. Since there are only �nitely many colors, in�nitely many
edges out of v have the same color. Let X be the set of vertices at the
other end of these edges, and choose v > X. Again, in�nitely many of
the edges out of v have the same color. We let X be the set of vertices at
the other end of these edges out of v, choose v > X, and so on.

In this way we obtain an in�nite set of vertices �v,v,v, . . .� such
that each vi is connected to vi+,vi+,vi+, . . . by edges of one color. Also,
since there are only �nitely many colors, the same color occurs for in-
�nitelymany of the vi: call them x,x,x, . . ..¿en ifX=�x,x,x, . . .�
the in�nite graph KX is monochromatic. j

¿eabove theorem is called theRamsey theorem for pairs because the
edges of the graph KX are essentially pairs of elements of X. We call the
theorem RT() for short. ¿ere is a more trivial Ramsey theorem RT(),
or the “Ramsey theorem for singletons,” stating that if the members of
N are colored by �nitely many colors then N has an in�nite subset X
whosemembers all receive the same color. RT(), which also follows from
arithmetical comprehension, is known as the in�nite pigeonhole principle.
We actually assumed RT() in the proof above, so in e�ect we proved
RT()� RT().

Likewise, there is a Ramsey theorem RT(), stating that if all triples of
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members of N are colored by �nitely many colors then N has an in�nite
subset X whose triples all have the same color. And RT()� RT() by
a slight elaboration of the argument above. Indeed, by similarly passing
from  to ,  to , and so on, we can prove a Ramsey theorem RT(k)
about coloring k-tuples in �nitely many colors.

EachRamsey theoremRT(k) can be proved inACA and,more inter-
estingly, each RT(k) for k C  is equivalent to arithmetical comprehen-
sion over RCA. Two remarkable non-equivalents of arithmetical com-
prehension are the following:

. RT(), which does not imply arithmetical comprehension, but im-
plies recursive comprehension, and

. ∀kRT(k), which implies arithmetical comprehension but is not
provable in ACA.

For more on the position of Ramsey theorems in reverse mathematics,
see Hirschfeldt (). ∀kRT(k) is o en called the in�nite Ramsey theo-
rem, and one of its claims to fame is that it implies the Paris-Harrington
theorem, a theorem in the language of PA which is not provable in PA.

Paris-Harrington is amodi�cation of the�nite Ramsey theoremwhich
states that for all k, l,m > N there is an n > N such that, for any coloring of
the k-element subsets of �,, . . . ,n� by l colors, there is an m-element
subset of �,, . . . ,n� whose k-element subsets all have the same color.
¿e �nite Ramsey theorem is provable in PA,3 but if we add the condi-
tion that the least element of the m-element subset be greater than m,
then the resulting theorem, due to Paris and Harrington (), is not
provable in PA.

In section . we show that the “arithmetical” theorems of ACA—
those not involving set variables—are exactly the same as those of PA.
In particular, ACA does not prove the Paris-Harrington theorem, and
hence it cannot prove the in�nite Ramsey theorem ∀kRT(k) either. ¿is
is an example of a phenomenon called ω-incompleteness, where a theory
can prove all instances P(),P(),P(), . . . of a certain property P(k),
but not ∀kP(k). (¿e in�nite Ramsey theorem is provable in the system
ACAmentioned in the footnote in section ., and hence so is the Paris-

3Nevertheless, the �nite Ramsey theorem remains di�cult when it comes to �nding
the numbers that it proves to exist. Even in the case k = l =  (-coloring the edges of a
graph) theminimum value of n is known only form = ,,. Form = , obviously n = ;
for m =  the value n =  found in the “baby Ramsey theorem” cannot be bettered; for
m =  it is known that the minimum n = . Form =  the minimum n is not yet known.
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Harrington theorem. ¿is is how we know that ACA is stronger than
ACA.)

. SOME RESULTS FROM LOGIC

In his famous lectureMathematical Problems, Hilbert ()made a bold
statement about the meaning of “existence” in mathematics:

If contradictory attributes be assigned to a concept, I say thatmath-
ematically the concept does not exist. So, for example, a real num-
ber whose square is − does not exist mathematically. But if it can
be proved that the attributes assigned to the concept can never lead
to a contradiction by the application of a �nite number of logical
processes, I say that the mathematical existence of the concept (for
example, of a number or a function which satis�es certain condi-
tions) is thereby proved.

¿e language of predicate logic that we use for arithmetic is an excellent
illustration of the principle stated by Hilbert (at greater length): consis-
tency implies existence. By analyzing the structure of sentences in arith-
metic we will show that: for any consistent set of sentences in the language
of arithmetic there is an interpretation that satis�es them all.

¿e nature of this interpretation (which is not necessarily the stan-
dard interpretation of arithmetic, but nevertheless quite concrete) will
become clearer as we build it. In outline, the process is to �nd an equiva-
lent of each sentence of a particularly simple form—the so-called Skolem
form—which has only universal quanti�ers and all of them in the front of
the sentence, so that satisfying the sentences amounts to satisfying their
instances for all possible values of their variables.¿e instances are essen-
tially Boolean formulas, that is, formulas whose only logic symbols are
Boolean operations. Any inconsistency depends on only �nitely many of
them, so the problem is reduced to satisfying an in�nite set of Boolean
formulas when any �nite subset can be satis�ed.

¿e latter problem is easily solved by applying theweakKőnig lemma.
¿e reduction to Boolean formulas takes place in the following stages.

Stage . Reduction of sentences to prenex form.
A sentence σ is in prenex form if all of its quanti�ers are to the le of

the other symbols. We showed how to convert sentences to prenex form
in section ..
Stage .Making all quanti�ers universal.
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If not all quanti�ers in the prenex form are universal, consider the
le most §. ¿en we have either the form (in which P itself may begin
with quanti�ers)

§xP(x), which we replace by P(a), for some new constant a,

or else the form

∀x�∀xk§yP(x, . . . ,xk, y) which we replace by
∀x�∀xkP(x, . . . ,xk, f(x, . . . ,xk)), for some new function
symbol f.

¿e function denoted by f is called a Skolem function. If P itself begins
with quanti�ers we repeat the process in P, and so on, until all § quan-
ti�ers are removed in favor of constants or function symbols. We then
have a universally quanti�ed equivalent of the original formula called its
Skolem form.
Stage . Constructing the domain of Skolem terms.

We have now added new constants a,a,a, . . . and new function
symbols f, f, f, . . . to the constant  and the function symbols S,+, and
ċ originally in the language of arithmetic.¿e terms that can be built from
the constants and function symbols are called Skolem terms. ¿ey in-
clude the terms ,S(),SS(), . . . originally present—denoting the nat-
ural numbers—plus new Skolem terms such as S(a), S(a)+S(a), and
so on, which do not have an obvious interpretation.

We interpret the Skolem terms simply as themselves; that is, as strings
of symbols.¿en the function symbols are interpreted in the natural way
as functions on the set of these strings. For example, S is interpreted as
the function that sends the string  to the string S(), a to the string
S(a), and so on.

¿e interpretation of the relation symbol = remains open at this stage.
For example, a = a may be true under one interpretation, false under
another. We will assign truth values to atomic formulas only at the �nal
stage, when we build a tree of all possible assignments of truth values,
and choose those that lie along a certain in�nite path in the tree.
Stage . Enumerating the atomic instances of the Skolem forms.

Once we have converted a sentence σ to an equivalent Skolem form
σS, which is of the form

∀x ċ ∀xkR(x, . . . ,xk) with R quanti�er-free,
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satisfying σ is equivalent to satisfying all instances R(t, . . . , tk) of σS,
where t, . . . , tk are Skolem terms. Since R is quanti�er-free, it is a
Boolean combination of atomic formulas t = t′, where t and t′ are Skolem
terms. Each of these atomic instances of σS has two possible interpreta-
tions, true or false.

Tomake a tree of all possible interpretationswe enumerate the atomic
instances in a list α,α,α, . . .. ¿e list can be made by ordering the
atomic formulas by length, where ak and fk both have length k. With
this de�nition, there are only �nitely many formulas of a given length,
so we can list them by taking the shortest formulas �rst, then the next
shortest, and so on.

We now have all we need to prove a theorem about satis�ability. It has
the corollary that any consistent set of sentences σ,σ,σ, . . . of arith-
metic has an interpretation that satis�es them all. ¿e domain of the in-
terpretation will be the set of Skolem terms constructed above.

Consistency implies satis�ability. If τ, τ, τ, . . . are a consistent set of
Boolean formulas, then there is an interpretation that satis�es them all.

Proof. Let α,α,α, . . . be a list of the atomic parts of the formulas τ, τ,
τ, . . .. We �rst construct the complete binary tree of all interpretations
(true or false) of α,α,α, . . . (�gure .).

F T

F T TF

F T F T TFTF

α

α

α

Figure . : ¿e tree of interpretations

At level  (labelled by α) there are two vertices, for the two possible
interpretations of α. Below each of these there are two vertices, for the
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two interpretations of α for each interpretation of α, and so on.¿us the
path drawn heavily represents the interpretation α = T, α = F, α = T.

Next we prune the complete tree by terminating a path at a vertex
on level k if the corresponding values of α,α, . . . ,αk falsify one of the
formulas τi. Since τ, τ, τ, . . . are consistent, at least one assignment of
values to α,α, . . . ,αk falsi�es no τi. Hence the pruned tree has arbitrar-
ily long paths. ¿en the weak Kőnig lemma gives an in�nite path, which
necessarily de�nes an assignment satisfying all of τ, τ, τ, . . . . j
Corollary. If σ,σ,σ, . . . is a consistent set of sentences in the language of
arithmetic, then there is an interpretation that satis�es all of σ,σ,σ, . . . .

Proof. From σ,σ,σ, . . . we construct the Skolem forms σS ,σS ,σS , . . .
and then all their instances, by dropping their quanti�ers and replacing
their variables by all Skolem terms. ¿e instances make up a consistent
set of Boolean formulas, so the theorem above gives an interpretation
that makes them simultaneously true.

In making all instances true, the interpretation satis�es the Skolem
forms σS ,σS ,σS , . . ., andhence the original sentences equivalent to them,
σ,σ,σ, . . .. j

. PEANO ARITHMETIC IN ACA

A remarkable feature of ACA is that, despite its strength in analysis, it
is no stronger than PA in proving theorems about natural numbers.¿is
is quite surprising, in view of the modern history of number theory,
where ideas from analysis have become virtually indispensable.4

4For example, it was thought for about  years that analysis was indispensable in
the proof of the prime number theorem, which states that the number of primes less than
n is asymptotic to n~ ln n. ¿ere was even a premature attempt to develop the “reverse
mathematics” of number theory, based on the discovery of Landau that certain theorems
can be proved equivalent to the prime number theorem by elementary methods.¿is led
Hardy and Heilbron () to believe that

it was Landau who �rst enabled experts to classify the theorems of prime num-
ber theory according to their “depths.”

However, their claim amounted to the conjecture that the prime number theorem itself
did not have an elementary proof—a conjecture which turned out to be false when ele-
mentary proofs of the prime number theorem were found by Selberg () and Erdős
(). To this day we know no “natural” example (that is, arising in number theory,
rather than logic) of a theorem of number theory without an elementary proof.
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Apparently, analysis lights the path to new discoveries in number the-
ory, but once the path is found it can usually be reconstructed in PA. In
the case of ACA, we can show that its arithmetic theorems are already
in PA as follows.

Suppose that σ is a true sentence in the language of PA not provable
in PA. (We know that there are many such sentences, by Gödel’s incom-
pleteness theorem.) ¿is means that  σ is consistent with the axioms
σ,σ,σ, . . . of PA, otherwise we could prove σ by deriving a contra-
diction from  σ. It follows, by the theorem in the previous section, that
there is an interpretation satisfying all the sentences  σ,σ,σ,σ, . . . .
¿e domain of this interpretation is an extension E of the usual natural
numbers ,S(),SS(), . . . by other Skolem terms.

We can extend this model of PA to amodel of ACA by adding all the
“arithmetically de�nable” subsets of E, that is, all the sets

�t > E � φ(t)�, where φ is a formula of PA with one free variable.

For this to work we need φ(t) to have de�nite truth value for each for-
mula φ and Skolem term t or, equivalently, for the Skolem form φS of φ.
¿is is the case, because each φ occurs in an instance σi of the induction
schema. So its Skolem form φS acquires a truth value for each Skolem
term in the course of the construction described in the previous section,
where truth values are assigned to the atomic parts of all the formulas we
wish to satisfy.

¿us there is amodel of ACA which satis�es all of σ,σ,σ,σ, . . .,
and therefore σ is not provable in ACA.

Conversely, if σ is a sentence provable in PA, then σ is provable in
ACA, since the PA induction schema follows from the ACA induction
schema and the other axioms of PA are axioms of ACA. In summary:
the purely arithmetic theorems of ACA are the same as those of PA.¿is
theorem is due to Friedman ().

It follows in particular thatACA doesnot prove the Paris-Harrington
theorem mentioned in section ., since Paris-Harrington is not prov-
able in PA. ¿is tells us why the in�nite Ramsey theorem that implies
Paris-Harrington (see section .) is not provable in ACA, despite its
considerable similarity to other Ramsey theorems that ACA can prove.
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Relative Consistency of ACA

Asmentioned in section ., we cannot prove the consistency of PAwith-
in PA itself, by Gödel’s second incompleteness theorem, and the same ap-
plies to any system that contains PA, such as ACA. Neverthess, proving
the consistency of ACA is notmore di�cult than proving Con(PA), the
sentence of PA that expresses the consistency of PA. ¿is is because

ACA is consistent� “=” is not provable in ACA

� “=” is not provable in PA
because “=” is a sentence of PA

� Con(PA).

We say that ACA is equiconsistent with PA. ¿us the Hilbert program
(described in section .) for proving the consistency of analysis does not
fail more badly than the program for proving the consistency of number
theory—at least if we interpret “analysis” to be ACA and “number the-
ory” to be PA.
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Recursive Comprehension

RCA can be viewed as an axiom system for “computable analysis.” Its set
existence axiom, called recursive comprehension, states the existence of
computable sets. (¿e use of the term “recursive” to mean “computable”
is going out of style, but alas it seems set in stone in the name RCA and
its set existence axiom.)

¿e second important feature of RCA is its induction axiom, Σ
induction, which essentially allows only properties of computably enu-
merable sets of objects to be proved. ¿is makes RCA a rather weak
system—able to prove few theorems outright—yet RCA is surprisingly
capable of proving equivalences between classical theorems.

¿is makes RCA a suitable base theory for the reverse mathematics
of analysis. RCA proves, for example, the equivalence of arithmetical
comprehension with the theorems discussed in sections . and ., and
also a new set of equivalences with the weak König lemma. In the present
chapter we prove the equivalences between the weak Kőnig lemma and
the Heine-Borel, extreme value, and uniform continuity theorems. We
also discuss the equivalence of the weak Kőnig lemma with two famous
theorems of topology: the Brouwer �xed point and the Jordan curve
theorems.

¿is latter collection of theorems, lying strictly between RCA and
ACA, establishes the importance of the system WKL whose set exis-
tence axiom is the weakKőnig lemma. Between them, RCA,WKL, and
ACA cover the basic theorems of analysis, and they sort them into three
di�erent levels of strength.
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. THE AXIOM SYSTEM RCA

We brie�y introduced RCA in section .. To expand somewhat on
what we said there, the axioms of RCA are the non-induction axioms of
PA plus, for Σ formulas φ,

∀n[φ() , ∀n(φ(n)� φ(n + ))]� ∀n φ(n). (Σ induction)

Typically,Σ induction is used to prove that all members of a computably
enumerated sequence have a certain property.¿e set existence axiom is,
for all Σ formulas φ and Π

 formulas ψ,

∀n[φ(n)� ψ(n)]� §X[n > X� φ(n)].
(Recursive comprehension)

¿is axiom arises from the result of Post () that a set is computable
if and only if it and its complement are computably enumerable, and the
fact that computably enumerable sets are Σ . We reiterate that the for-
mulas φ and ψ can contain set variables, but not set quanti�ers. In e�ect,
this enables RCA to prove the existence of any set computable from a
given set Y; for example, the set Z of even numbers in Y.

An important example of computation from a given set is the diago-
nal computation by which we proved uncountability of R in section ..

Uncountability ofR. For any sequence x,x,x, . . . of real numbers there
is a real number x x each xn.
Proof (in RCA). Given the sequence x,x,x, . . . we compute x by the
rule

nth decimal digit of x =
¢̈̈
¦̈
¤̈

 if nth decimal digit of xn x 
 if nth decimal digit of xn = .

¿us x exists by recursive comprehension, each digit of x is either  or ,
and x di�ers from xn in the nth decimal place. Since a decimal expansion
whose digits are each  or  is unique, this makes x x each xn. j

However, asmentioned in section ., RCA has aminimalmodel in
which all the sets are computable. So when a computable set Y is related
to a noncomputable set Z, RCA will not be able to prove the existence
of Z, since the minimal model will contain Y but not Z. For example,
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each computable function is in the minimal model (as a set of ordered
pairs), but not the range of each computable function, since the range can
be noncomputable. As we saw in section ., this is why RCA cannot
prove “the range of every function exists.” Similar arguments enable us to
show that some important theorems of analysis are not provable in RCA

because they imply the existence of noncomputable sets. In particular,
RCA is too weak to prove the least upper bound principle, the Heine-
Borel theorem, or the Bolzano-Weierstrass theorem.

¿eweakness of RCA is a plus, however, whenwewant a base theory
to prove equivalences between stronger axioms and various theorems—
because RCA is strong enough to prove many equivalences. For exam-
ple, the proofs in the previous chapter that the arithmetic comprehen-
sion axiom is equivalent to (various statements of) completeness of R,
the Kőnig in�nity lemma, and the Bolzano-Weierstrass theorem can be
carried out in RCA. In this chapter we use RCA as base theory inwhich
to prove equivalents of the weak Kőnig lemma.

. REAL NUMBERS AND CONTINUOUS FUNCTIONS

In the above proof that R is uncountable we assumed that real numbers
are given by decimal expansions, and we used the computability of the
decimal expansion of the diagonal number x to prove its existence in
RCA. ¿is is indeed the classical concept of computable number, intro-
duced byTuring (). Butwhen doing analysis in RCA it is convenient
to use a slightly di�erent real number concept, better suited to the pro-
cesses of analysis.

De�nition. A real number is a nested sequence of closed rational inter-
vals

[a,b] c [a,b] c [a,b] c �

such that bn − an � .

¿e nested interval concept of real number gets around the di�cul-
ties RCA has with convergent sequences.¿e de�nition does not say the
nested sequence has to be computable, but of course to prove in RCA

that a real number exists we have to exhibit a computation, and then in-
voke recursive comprehension. To do this it su�ces to give a computable
enumeration of the intervals [an,bn], because the sequence is the set of
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pairs `n, [an,bn]e and this set is computable. (Namely, for each n run the
enumeration until the nth term appears.)

We note that any computable sequence of intervals [an,bn] with a
single common point determines a real number x in the above sense,
because we can compute from it the nested sequence

[a′,b′] c [a′,b′] c [a′,b′] c �

where [a′n,b′n] = [a,b] 9 � 9 [an,bn]. ¿e sequence [a′n,b′n] has the
same common point as the sequence [an,bn], so necessarily b′n−a′n � .

One di�culty we cannot avoid is that, in general, it is impossible to
know whether a real number x equals . When x is de�ned by the se-
quence of intervals [an,bn] then x =  if and only if an B  B bn for all
n, and we cannot observe the whole in�nite sequence. But if x A  we
will observe this fact at some �nite stage, because it will eventually hap-
pen that an A . Similarly, when x < wewill eventually observe this fact.
¿is limited knowledge is enough for some important purposes, such as
proving the intermediate value theorem, as we will see in the next sec-
tion.

De�ning real numbers by intervals also helps the study of continuous
functions in RCA, where we encode such functions by rational intervals
as in section .. We want to say that a continuous function f is given by
pairs of rational intervals `(c,d),(a,b)e such that f((c,d)) b (a,b),
and that there are “enough” intervals to determine f(x) for each real
number x in the domain of f. ¿e problem now is that f itself is not
given, so we cannot de�ne the set of pairs in terms of it. Instead, we seek
some simple and natural conditions on a set of pairs, which ensure that
they encode a continuous function f on some domain.

De�nitions.A set of ordered pairs `(c,d),(a,b)e of rational intervals is
called the code of a continuous function f, code(f),

. if `(c,d),(a,b)e > code(f) and `(c,d),(a′,b′)e > code(f) then
(a,b) and (a′,b′) intersect;

. if `(c,d),(a,b)e > code(f) and (c′,d′) b (c,d) then we have
`(c′,d′),(a,b)e > code(f); and

. if `(c,d),(a,b)e > code(f) and (a,b) b (a′,b′) then we have
`(c,d),(a′,b′)e > code(f).

A real number x is in the domain of f if the intervals (c,d) include a
nested sequence (cn,dn) with single common point x such that each
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(cn,dn) is paired with an (an,bn), and the sequence of the (an,bn) has
a single common point, which we call f(x).

It follows from these de�nitions that if a whole interval
(c,d) b domain(f) then in fact f((c,d)) b (a,b) for each pair
`(c,d),(a,b)e > code(f). We prove existence of a continuous function
f by exhibiting a computation of the set code(f) and appealing to recur-
sive comprehension.

Given code(f) and a point x in domain(f) we can compute f(x) from
them as follows. We are given x as a sequence (cn,dn) so, by listing the
(cn,dn) alongside all (c,d) occurring in code(f), we can �nd all in-
tervals (a,b) paired with each (cn,dn). ¿ese (a,b) become arbitrarily
small, because f(x) exists, so for each k we can �nd a pair `(cnk,dnk),
(ank,bnk)e with bnk − ank < ~k. Since (cnk,dnk) is a subsequence of
(cn,dn) its single commonpoint is x.¿e computable sequence (ank,bnk)
includes the point f(x) by property , and only this point because
bnk − ank < ~k. ¿us f(x) is computable from x.

. THE INTERMEDIATE VALUE THEOREM

¿e unavoidable di�culty with real numbers means that in general we
cannot know that f(x) = , for given x and continuous function f. But
when f(x) A  or f(x) <  we can eventually observe this fact, which
enables us to save the proof of the intermediate value theorem. A naive
attempt to prove it, following the classical argument in section ., goes
like this.

Given f() <  and f() A , calculate f(~). If f(~) =  we
are done. If not, then f passes from negative to positive values in either
[, ~] or [~, ]. Let I be the half of [,] in which this happens, and
repeat the argument in I. Either f =  at the midpoint of I, or there is
a half I of I in which f passes from negative to positive values. And so
on. ¿is process either �nds a midpoint of some interval at which f = ,
or else it generates a nested sequence I a I a � of intervals, on each of
which f passes from negative to positive values. But then I, I, . . . have
a single common point x, at which we necessarily have f(x) = .

¿ere are two problems with this attempt.

. If f(c) =  at some midpoint c we will not necessarily observe this
fact, no matter how long we spend computing f(c).
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. If f(c) <  or f(c) A  at some midpoint c we will eventually
observe this fact, but we do not know how long we have to wait.

Nothing can be done about problem , so we have to do our best with
problem .¿is is the kind of di�culty that computability theorists love!
To deal with it we start more and more computations, and wait for the
results. In this case, we wait for points c where f(c) <  or f(c) A 
to show up, and use them as long as they are “su�ciently close” to the
middle of the interval.

Intermediate value theorem. If f is continuous on [, ] and f() < 
and f() A  then f(c) =  for some c in [, ].
Proof. If f =  on a whole subinterval of [,] then f(c) =  for some
rational (and hence computable) point c, which exists by recursive com-
prehension.

Otherwise, compute values of f in stages as follows.

Stage . Do one step in the computation of f(~).
Stage s. Do s steps in the computation of f(r~s), for r = ,, . . . ,s− .

¿us stage s continues all the computations in progress at stage s−,
as well as starting new computations at points half way between the
points where computations have already been started.

In this way we will eventually �nd each point of the form x = r~s at
which f(x) A  or f(x) < . And every subinterval of [, ] contains
such points, since we now assume that there is no subinterval on which
f is constantly zero. ¿is fact allows us to �x the naive attempt above, by
looking at “midintervals” instead of midpoints.

We begin with an interval in the middle of [,], say the middle third,
and let c be the �rst point x found in it (during the above computation)
for which f(x) A  or f(x) < . ¿en f passes from negative to positive
values on either [, c] or [c, ]. Let I be the subinterval on which this
happens, and look at the middle third of I. We similarly �nd a subin-
terval I of I, between a point c in the middle third of I and one of its
endpoints, on which f passes from negative to positive values.

Continuing in thiswaywe obtain (byΣ induction) a nested sequence
of closed intervals I a I a I a � such that f passes from negative to
positive values on each In. Also, each In is at most / the length of its
predecessor, so the length of In tends to zero, and hence the sequence
I, I, I, . . . de�nes a real number, c, by recursive comprehension.
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It is clear from the continuity of f that f(c) = . j
An important special case of the intermediate value theorem is where

f is an odd-degree polynomial with real coe�cients, say

f(x) = xn + an−xn− +� + ax + a.

In that case f(x) <  for large negative x and f(x) A  for large positive
x, so there is an interval I on which f passes from negative to posi-
tive values. ¿en the proof above goes through with I in place of [,];
indeedwe can rule out the possibility that f is constantly zero on a subin-
terval. We can then use the argument of Gauss (), which reduces an
arbitrary polynomial equation to one of odd degree, to prove in RCA:

Fundamental theorem of algebra. For any polynomial f with real co-
e�cients, the equation f(x) =  has a solution in the complex numbers.
j

. THE CANTOR SET REVISITED

To study the weak Kőnig lemmawe revisit binary trees and their connec-
tion with the Cantor set, C, introduced in section .. ¿ere we saw that
C consists of the points that remain in [,] a er removal of the following
open intervals, which we will call the C-complementary intervals:

� 
 ,


�

� 
 ,


� �  ,


�

� 
 ,


� � 

 ,

� � 

 ,

� �  ,


�

. . . . . . . . . . . . . . . . . . . . . . . .

Wealso saw that the points ofC correspond to in�nite paths in a com-
plete binary tree whose vertices at level n are the closed intervals that re-
main a er removing the intervals in rownof the list ofC-complementary
intervals above. Figure . shows these intervals again, in their successive
levels.

We now “expand” each black closed interval to a gray open interval
by increasing its length by one third at each end (but omitting the end-
points). For example, the intervals �, � , �


 , � at level  of �gure . ex-

pand to �− 
 ,


� ,�


 ,


 �. ¿e expanded intervals at each level cover C,

so we call them C-covering intervals. ¿e smallness of the expansion en-
sures that any two C-covering intervals not on the same path are dis-
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Figure . : [,] a er removing the C-complementary intervals

joint. Figure . shows the �rst four levels of C-covering intervals, su-
perimposed on the vertices of the tree whose in�nite paths represent the
members of C.

Figure . : C-covering intervals

Together, theC-complementary andC-covering intervals cover [,].
So, according to the Heine-Borel theorem, a �nite subset of them also
covers [,]. ¿is enables us, by choosing C-covering intervals to suit a
given binary tree, to use the Heine-Borel theorem to prove �niteness re-
sults about trees. In particular, we can show that the Heine-Borel theo-
rem implies the weak Kőnig lemma, and that the implication is provable
in RCA.

. FROMHEINE-BOREL TOWEAK KŐNIG LEMMA

¿e classical proof of the Heine-Borel theorem in section . suggests
that it follows from the weak Kőnig lemma, and we might also hope to
prove the converse. However, we have to proceed a little di�erently to
prove an equivalence between these two theorems in RCA. We have to
use the sequential form of Heine-Borel, and we have to make the proofs
as computable as possible.¿ese results, and the related ones on uniform
continuity, are due to Simpson and we have mostly followed the proofs
in Simpson ().

Our �rst aim is to prove that sequential Heine-Borel implies the weak
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Kőnig lemma in the following form (logically equivalent to the usual
form): if T is a binary tree with no in�nite path, then T is �nite. Our ap-
proach is to view T as a subtree of the complete binary tree B whose
in�nite paths are the members of C, and to associate certain C-covering
intervals with T. ¿en we can use the Heine-Borel theorem to deduce
that T is �nite.

We pass from T to a set of C-covering intervals using vertices called
fallen leaves of T, de�ned below, on which we place the corresponding
C-covering intervals. Figure . shows an example, with the edges of T
drawn extra thick and C-covering intervals placed on the fallen leaves
of T.

Figure . : Covering the fallen leaves of a tree

De�nition. A vertex v of B is called a fallen leaf of T if v ~> T but u > T,
where u is the vertex above v.

Two remarks are immediate from this de�nition:

• If T has no in�nite path, then the C-covering intervals that cover
fallen leaves of T cover all of C—because an uncovered point cor-
responds to an in�nite path, which T does not have.

• ¿e C-covering intervals corresponding to distinct fallen leaves of
a tree T are disjoint—because C-covering intervals overlap only if
they lie on the same path, and one fallen leaf cannot lie on the path
to another, since a fallen leaf terminates all paths below it.

A more substantive result about the paths not covered is the following:
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Computable in�nite path lemma. If T is an in�nite computable tree with
a �nite number of fallen leaves, then T has an in�nite computable path.

Proof. Since T has only �nitely many fallen leaves, there is a level n below
which no fallen leaves occur. Let v be the le most vertex ofT below level
n, which must exist since T has in�nitely many vertices.

Since there is no fallen leaf below v, at least one of the two vertices
of B immediately below v is in T. Let v be the le most of the two, and
repeat the argument at v. Again, at least one of the two vertices of B
below v is in T. Let v be the le most of them, and so on.

In this way we can compute (from knowledge of the members of T)
an in�nite path v,v,v, . . . in T. j

Heine-Borel implies the weak Kőnig lemma. If T is a tree with no in�-
nite path, then T is �nite.

Proof. IfT is a treewith no in�nite path, consider the set ofC-covering in-
tervals placed on fallen leaves of T. ¿en, by the �rst remark above, this
set of intervals covers C. ¿erefore, by combining these intervals with
the C-complementary intervals we get a covering of [,] by open inter-
vals. ¿e Heine-Borel theorem says that �nitely many of these intervals
also cover [,]. In particular, we get �nitely many C-covering intervals,
placed on fallen leaves of T, that cover C.

Next, since the intervals placed on distinct fallen leaves are disjoint,
by the second remark above, it follows thatT has only �nitelymany fallen
leaves. But then, if T is in�nite, it follows from the computable in�nite
path lemma and recursive comprehension that T has an in�nite path,
contrary to hypothesis. ¿us T is �nite. j

¿e implication just proved can be established in RCA, thanks to the
computability of the path from the tree in the lemma. ¿e implication
actually requires only a special case of Heine-Borel, where the covering
intervals form a sequence. (¿e set of C-complementary and C-covering
intervals can be written in a sequence by listing them level by level.) Also,
we can assume that the endpoints of the intervals are rational. ¿is is the
natural version of Heine-Borel to use, but to make it clear that it is not
the general (and classical) version we call it the sequential Heine-Borel
theorem. Like the classical Heine-Borel theorem, the sequential Heine-
Borel theorem is not provable in RCA. ¿e counterexample in section
. already shows this.
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¿us the proof above shows that the sequential Heine-Borel theorem
implies the weak Kőnig lemma in RCA. In the next section wewill show
that the converse implication holds inRCA. Asmentionedwhenwe �rst
proved the Heine-Borel theorem in section ., somemodi�cation of the
argument is needed in order to pass “computably” from the weak Kőnig
lemma to Heine-Borel.

. FROMWEAK KŐNIG LEMMA TOHEINE-BOREL

¿e sequential Heine-Borel theorem says: if a sequence (a,b),(a,b)
. . . of rational intervals covers [,] then some initial segment of the se-
quence (a,b),(a,b), . . . ,(an,bn) also covers [,].Wewill prove this
theorem by deducing it from the weak Kőnig lemma.¿e proof is some-
what similar to the construction of the Cantor set C, building a binary
tree whose vertices at level n are closed intervals that remain (at least
in part) when the intervals (a,b),(a,b), . . . ,(an,bn) are removed
from [,].

Weak Kőnig lemma implies sequential Heine-Borel. If (ai,bi) are ra-
tional intervals such that the in�nite sequence (a,b),(a,b), . . . covers
[, ] then, for some n, (a,b),(a,b), . . . ,(an,bn) also covers [, ].

Proof. Given the sequence (a,b),(a,b), . . . we build a tree T whose
vertices at level n are closed subintervals of [,]; namely, the subintervals
of the form � mn ,

m+
n � not completely covered by

(a,b), (a,b), . . . , (an,bn).

For example, when the �rst three intervals (ai,bi) are � 
 ,


�, �−


 ,


�,

and � 
 ,


� the �rst three levels of T are as shown in �gure .. (¿e

covering intervals are drawn in white, so they erase the parts of [,] they
cover.)

¿e corresponding vertices of T (below the top vertex [,]) are

�, � on level  because �

 , � is covered by � 

 ,

�,

�, � , �

 ,


� on level  because neither is covered by � 

 ,

� ,�−


 ,


�,

�, � , �

 ,


� , �


 ,


� on level  because �


 ,


� is not covered by �


 ,


�.

¿ere is an edge of T from each subinterval at level n to each half of it
that remains at level n + . ¿us T is a binary tree.
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Figure . : ¿e tree of incompletely covered subintervals

Since (a,b),(a,b), . . . cover [,], each x > [, ] falls into some
(ai,bi). Indeed, for n su�ciently large, the one of the n subintervals
that contains x falls inside some (ai,bi), and so do the subintervals to
its le and right. At the stage when this happens none of these three1
subintervals are put in T, thereby terminating all paths in T that lead to
x. ¿erefore, T has no in�nite path, and hence T is �nite by the weak
Kőnig lemma.

If n is the �rst level that includes no vertices of T, then it follows from
the de�nition of T that (a,b),(a,b), . . . ,(an,bn) covers [, ]. j

In the above proof the tree T is obviously computable from the se-
quence (a,b),(a,b), . . ., so the proof can be carried out in RCA,
like the proof of the converse result in the previous section. ¿us, al-
though neither the weak Kőnig lemma nor the sequential Heine-Borel
theorem is provable in RCA (as we saw in section .) their equivalence
is. In this sense, the weak Kőnig lemma is the “right axiom” to add to
RCA in order to prove the sequential Heine-Borel theorem.

. UNIFORMCONTINUITY

In section . we de�ned a function f to be uniformly continuous on a set
S if, for all x, y in S, and all ε A , there is a δ A  such that

Sx − yS < δ� Sf(x) − f(y)S < ε.

As we mentioned at the time, uniformity means that δ depends only on
ε, not on x or y. It is now convenient to let δ be explicitly a function of

1¿is takes care of a worry when x is the endpoint of an interval, in which case two
di�erent in�nite paths in T could lead to x.
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ε, and also to let the “arbitrarily small” ε A  be explicitly −n, where n
is a positive integer. We can then express the dependence of δ on ε by a
function h of positive integers, called amodulus of uniform continuity, by
setting δ = −h(n) when ε = −n. ¿en we make the following:

De�nition.A function f on a set S is uniformly continuous with modulus
h if, for all x, y > S and all n > N,

Sx − yS < −h(n) � Sf(x) − f(y)S < −n.

¿e classical theorem that any continuous function on [,] is uni-
formly continuous now has the following counterpart in RCA.

WeakKőnig lemma implies uniformcontinuity.¿eweakKőnig lemma
implies that any continuous function on [, ] has a modulus of uniform
continuity.

Proof.We skip the details. But the idea is to combine the proof in RCA

that the weak Kőnig lemma implies sequential Heine-Borel, from the
previous section, with the proof that Heine-Borel implies uniform conti-
nuity in section ..¿e latter proof can also be carried out “computably,”
leading to a proof in RCA. j

More importantly, we can show in RCA that uniform continuity im-
plies the weak Kőnig lemma, so the weak Kőnig lemma is the “right ax-
iom” to prove it.

Uniform continuity implies weak Kőnig lemma. Uniform continuity of
continuous functions on [, ] implies the weak Kőnig lemma.

Proof. We will prove that if the weak Kőnig lemma fails, then there is
a continuous function on [,] that is not uniformly continuous. Sup-
pose then that T is an in�nite binary tree with no in�nite path. From T
we will compute a continuous function f on [,] that is not uniformly
continuous—in fact, f is unbounded, because the values of f include the
lengths of all paths in T.

By �nding the vertices of T level by level, we can enumerate its fallen
leaves level by level, together with the corresponding C-covering inter-
vals described in sections . and .. At the same time, we can enumerate
the C-complementary intervals of section . down to the same level. At
stage nwe de�ne f for x in the unionUn of the intervals (of both kinds)
listed down to level n, extending the de�nition of f at stage n−  on each
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new interval that appears so as to make f piecewise linear, hence contin-
uous, on Un.

¿e de�nition of f is largely arbitrary; the only important require-
ment is the following: when a new C-covering interval I appears at stage
n, f(x) is de�ned to be n for at least one point x in I. ¿is is always pos-
sible, because the C-complementary intervals cover no points of C, so
at stage n they leave uncovered a whole interval containing points of C.
Consequently, when I �rst appears, f is unde�ned on awhole subinterval
J of I, which is contained in [,] since the C-complementary intervals
all lie in [,].¿is allows us to continuously extend f to J so as to obtain
f(x) = n for at least one x > J.

It follows that f is unbounded on [,], taking the value n for arbi-
trarily large values of n. ¿is is because T is in�nite, but all its paths are
�nite, so fallen leaves occur at arbitrarily deep levels n. And f is continu-
ous, being continuous at each point x > [, ]: indeed, each x > [, ] falls
into the open setUn at some stage, at which stage f becomes de�ned and
continuous at x. j

Corollary.¿e extreme value theorem implies the weak Kőnig lemma.

Proof. ¿e above proof also shows that, if the weak Kőnig lemma fails,
then so does the extreme value theorem, because f is unbounded and
continuous on [,]. ¿us the extreme value theorem implies the weak
Kőnig lemma. j

¿eproof of the corollary can be carried out in RCA, and so can that
of its converse—weakKőnig lemma implies the extreme value theorem—
by attending to computability in the classical proof (section .). We do
the converse implication in the next section.¿us theweakKőnig lemma
is also the “right axiom” to prove the extreme value theorem. Not sur-
prisingly, considering the close relation between uniform continuity and
Riemann integrability, the weak Kőnig lemma is also the “right axiom" to
proveRiemann integrability of continuous functions. Formore details on
these, and other theorems provably equivalent to the weak Kőnig lemma
in RCA, see Simpson (), pp. –.

. FROMWEAK KŐNIG TO EXTREME VALUE

We begin, as in the classical proof of the extreme value theorem (sec-
tion .), by supposing that we have an unbounded continuous function
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on [,]. We seek a contradiction by narrowing the region on which f is
unbounded, by repeated bisection. But now we have to pursue the place
where f is unbounded by a computable process, so we compute a tree
of subintervals, discarding a subinterval I only when we discover that f
takes lower values on I than on some other subinterval. (See the expla-
nation below of how such intervals are discovered.) ¿e result turns out
to be an in�nite binary tree with no in�nite path, contradicting the weak
Kőnig lemma.

Finding intervals to discard. If f takes lower values on a subinterval I
than on some other subinterval, this is revealed by the representation of
f as a sequence of pairs of rational intervals `(cn,dn),(an,bn)e such that
f((cn,dn)) b (an,bn) (see section .). It follows that if I is su�ciently
small then I ⊂ some (cm,dm), so by enumerating the pairs in f we will
eventually discover I ⊂ (cm,dm) and hence that am < f(x) < bm for all
x > I. If f takes values C bm on some interval J we will eventually know
this too, by �nding J ⊂ some (cn,dn) with f((cn,dn)) b (an,bn) and
an C bm. At this stage we know that f takes lower values on I than it does
on J.

WeakKőnig lemma implies boundedness. If there is an unbounded con-
tinuous function on [, ], then there is an in�nite binary tree with no in-
�nite path.

Proof.¿e intervals obtained by repeated bisection of [,] will be viewed
as vertices of the complete binary tree: [,] is the top vertex, [,/] and
[/,] are the two vertices below it, and so on. Figure . shows what the
complete binary tree looks like.

We compute a subtree T of the complete binary tree in stages, at stage
n enumerating the �rst n pairs in f and inspecting the subintervals I at
level n (that is, the subintervals of length −n). We omit a subinterval I if
it lies below a subinterval previously omitted (to ensure that T is a tree),
or if we discover that the values of f on I are less than its values on some
other interval (by the process described above).

It follows that T is computable from f: to decide whether an interval
I on level n belongs to T we run the above computation up to stage n.
¿us the tree T exists by recursive comprehension.

Also, since f is unbounded there will be intervals not omitted at ev-
ery level, so T is in�nite. However, if T has an in�nite path, this path
represents a nested sequence of closed intervals with a single common
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Figure . : ¿e complete binary tree of subintervals

point, c say. And the values of f on these intervals must be unbounded—
otherwise the sequence of intervals would be terminated when f was
discovered to have higher values elsewhere. But then f(c) is unde�ned,
contrary to the continuity of f.

¿is contradiction shows that T has no in�nite path.
¿us a continuous unbounded f on [,] implies that there is an in�-

nite binary tree with no in�nite path. Equivalently, if each in�nite binary
tree has an in�nite path (the weak Kőnig lemma), then every continuous
f is bounded. j

¿e above theorem is not actually needed for our proof of the ex-
treme value theorem, but it is good motivation for it. Now, instead of an
unbounded continuous function f we have one with no maximum, so
instead of seeking values of f(x) beyond all bounds, we seek values of
f(x) greater than any previously found. However, it remains true that
we can discover when f takes lower values on some interval I than on
some other interval, so we can apply the same construction.

Weak Kőnig lemma implies the extreme value theorem. If there is a
continuous function on [, ] with no maximum value, then there is an
in�nite binary tree with no in�nite path.

Proof. Suppose that f is a continuous function on [,] that takes no
maximum value. As above, we repeatedly bisect the interval [,], and
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compute from f a subtree T of the complete binary tree of subintervals
by the same algorithm.

Since f is continuous and with no maximum value, for any f(x)
there is a greater f(x), hence for su�ciently small intervals I contain-
ing x and I we will discover that f takes smaller values on I than on I,
and hence we will omit the interval I from T. As in the previous proof,
an interval is omitted only when some other interval is retained, so T is
in�nite.

Again, as in the previous proof, an in�nite path in T represents a
nested sequence of intervals with a single common point c. And the val-
ues of f on these intervals must include values at least as great as any
value of f found elsewhere, otherwise the sequence would be terminated
when a greater value of fwas discovered. But then f(c) exists, by conti-
nuity of f, and f(c)must be the maximum value of f on [,].

¿is contradiction shows that T has no in�nite path, so a continuous
f on [,] with nomaximum value implies that there is an in�nite binary
tree with no in�nite path. Equivalently, if each in�nite binary tree has
an in�nite path (the weak Kőnig lemma) then any continuous f on [,]
takes a maximum value. j

. THEOREMS OFWKL

We now de�ne WKL = RCA + weak Kőnig lemma, so WKL is RCA

with the weak Kőnig lemma as an additional set existence axiom (in
fact, the weak Kőnig lemma implies recursive comprehension, so it is
the set existence axiom forWKL).¿en it follows from the results of the
last three sections that theHeine-Borel, uniform continuity, and extreme
value theorems are theorems of WKL. ¿ey are not theorems of RCA

because the weak Kőnig lemma fails in RCA, thanks to the counter-
example in section ..

WKL is noteworthy because it can prove not only basic theorems
such asHeine-Borel, but also some important theorems generally thought
to be more di�cult than Heine-Borel. Among them are the Brouwer
�xed point theorem in two or more dimensions,2 and the Jordan curve
theorem.

2¿eBrouwer �xed point theorem in one dimension follows easily from the interme-
diate value theorem, so it is provable in RCA. ¿us the di�erence between RCA and
WKL re�ects the di�erence between the Brouwer �xed point theorem in one and higher
dimensions.
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A proof of the Brouwer �xed point theorem is fairly straightforward,
because one of the standard proofs—from the so-called Sperner’s lemma
of Sperner ()—translates into a proof inWKL. Much less obvious is
the converse, though an outline of it may be found in Shioji and Tanaka
(). ¿us in fact the Brouwer �xed point theorem is equivalent to the
weak Kőnig lemma over RCA.

¿e situation is reversed for the Jordan curve theorem. ¿e known
proof of the theorem inWKL—by Sakamoto and Yokoyama ()—is
di�cult (as is the classical proof), but proving that the Jordan curve theo-
rem implies the weak Kőnig lemma is quite simple. One takes the Jordan
curve theorem to say that (R− the image of the curve) consists of two
components, where points P,Q belong to the same component if there
is a polygonal path from P to Q not meeting the curve. A counterexam-
ple may then be constructed using a positive continuous function f on
[,] with no maximum (implied as above by a “failed binary tree” that is
in�nite but has no in�nite path). From f we get the positive continuous
function ~fwith nominimum but with greatest lower bound  on [,].

By connecting the endpoints `, ~f()e and `, ~f()e of the graph
of ~f to the endpoints of [,] by vertical segments one obtains a sim-
ple closed curve (suggested by �gure .) whose complement consists of
more than two components. To see why, consider two points P and Q
below the graph, but above the x-axis, and separated by x-values where
~f(x) becomes arbitrarily small. Neither P norQ is in the “outer” com-
ponent of the curve complement, but they cannot be connected by a
polygonal path not meeting the curve, since any such path has a min-
imum positive distance from the x-axis.

Sakamoto and Yokoyama () also prove that a generalization of
the Jordan curve theorem, the Schön�ies theorem, is equivalent to the
weak Kőnig lemma over RCA. ¿e Schön�ies theorem says that the in-
terior of a simple closed curve in the plane can be mapped to a disk by a
continuous bijection. A stronger version, the Riemannmapping theorem,
implies that the interior is conformally equivalent to the disk: there is a
continuous bijection between them that preserves angles. Horihata and
Yokoyama () proved the Riemann mapping theorem equivalent to
arithmetical comprehension over WKL. ¿is means that the Riemann
mapping theorem is provable in ACA, but not inWKL, for reasons we
will see in the next section.
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Figure . : Countering the Jordan curve theorem

Other¿eorems of Topology

Brouwer (a) proved two other famous theorems of topology—in-
variance of domain and invariance of dimension—that are consequences
of his �xed point theorem, proved in Brouwer (b). (¿e lemma of
Sperner () was in fact used by Sperner not only to prove the �xed
point theorem but also to streamline the proofs of Brouwer’s invariance
theorems.) Invariance of domain states that a continuous injective map
with open domain in Rn has an open image. Invariance of dimension
(which follows easily from invariance of domain) states that there is no
continuous bijection between Rm and Rn if m x n. ¿e proofs of these
theorems from the �xed point theorem can be carried out in RCA, so
they are theorems of WKL.

However, it has apparently not yet been established whether either
of the invariance theorems is provable in RCA (at least for dimension
greater than one). Nor do we know whether either of them implies the
weak Kőnig lemma, and hence is equivalent to it. Finding the exact
strength of the Brouwer invariance theorems seems tomeone of themost
interesting open problems in reverse mathematics.

¿e special case of invariance of dimension wherem =  and n =  is
provable in RCA. To prove it we suppose, for the sake of contradiction,
that f � R� R is a continuous bijection. NowR can be separated by the
single point x = , in the sense that there is no continuous “path” in R
from − to  avoiding ; that is, no continuous t � [, ] � R − �� with
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t() = − and t() = . Such a function t, since it does not take the value
, contradicts the intermediate value theorem. On the other hand, there
obviously is a continuous path in R from f(−) to f() and avoiding
f(), since these points are distinct by the assumption that f is a bijec-
tion. ¿is contradicts the assumption that f is a continuous bijection—
meaning that f− exists and is continuous—since f− would then give a
continuous path in R from − to  avoiding .

¿is special case is provable in RCA because the intermediate value
theorem is. But the special case is generally considered much easier than
the case of arbitrary m and n, because “separation” is a trickier concept
in dimension greater than one. So provability of general invariance of
dimension in RCA seems doubtful.¿e same holds a fortiori for invari-
ance of domain in higher dimensions, since invariance of domain implies
invariance of dimension.

. WKL, ACA, AND BEYOND

Since ACA proves the weak Kőnig lemma, all theorems of WKL are
provable in ACA. In fact ACA can prove more theorems than WKL,
though the known proofs of this fact depend on some advanced results
of logic and computability theory. ¿e approach from logic will be dis-
cussed further in section ., and the approach from computability the-
ory in section .. However, it is worth mentioning both brie�y here.

ACA can prove the consistency of WKL by de�ning a class of sets
that satisfy the axioms ofWKL. But a famous theorem of logic—Gödel’s
second incompleteness theorem—implies thatWKL cannot prove its own
consistency. So a formal statement of the consistency of WKL,
Con(WKL), is a theorem of ACA that is not a theorem of WKL. It
follows that any theorem of ACA equivalent to arithmetical compre-
hension, such as the full Kőnig lemma or the Bolzano-Weierstrass theo-
rem, is not a theorem ofWKL—otherwiseWKL would prove as much
as ACA.

Another way to see this result is to show that WKL can be modeled
by a class of sets that does not include all arithmetically de�nable sets.
Since anymodel of ACA includes all arithmetically de�nable sets, as we
saw in section ., it follows that WKL does not include ACA.

WKL can in fact be modeled by a class of sets in Σ 9 Π
. ¿is is

shown with the help of a concept from computability theory called low
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degree. ¿e sets of low degree are in Σ 9Π
 and they have the property

that any in�nite tree of low degree has an in�nite path of low degree. It
follows that a collection of sets of low degree provides a model ofWKL.
And this model does not include all arithmetically de�nable sets, since
not all arithmetically de�nable sets are in Σ 9 Π

, as we saw in section
.. For more about the concept of low degree see section ., and for the
key theorem about low degrees see Simpson (), pp. –.

¿e “Big Five” Systems

¿e theorems of analysis and topology we have mentioned until now �t
very neatly into the systems RCA, WKL, and ACA. If RCA does not
prove them outright then it proves them equivalent either to the weak
Kőnig lemma or to arithmetical comprehension, the de�ning axioms of
WKL and ACA respectively. It is therefore tempting to end the book
here, with the following neat classi�cation of theorems.

RCA proves Intermediate Value ¿eorem.
WKL proves Sequential Heine-Borel ¿eorem

� Uniform Continuity ¿eorem
� Extreme Value¿eorem
� Riemann Integrability of Continuous Functions
� Brouwer Fixed Point ¿eorem
� Jordan Curve¿eorem
(Equivalences provable in RCA).

ACA proves Kőnig In�nity Lemma
� Sequential Bolzano-Weierstrass ¿eorem
� Sequential Least Upper Bound Property
� Cauchy Convergence Criterion
(Equivalences provable in RCA).

Butmathematics never ends neatly, and in fact there are a few anomalous
theorems, some of which are accommodated by two new systems, and
others which seem to break the bounds of the neat classi�cation. One
such theorem is the in�nite Ramsey theorem ∀kRT(k), mentioned in
section .. As we said there, the in�nite Ramsey theorem is not provable
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in ACA, though some of its special cases are equivalent to arithmetical
comprehension.

¿us we would hope that the in�nite Ramsey theorem is provable
from a stronger set existence axiom. Two such axioms have been singled
out as being natural and having a variety of interesting equivalents. ¿e
weaker of the two is called arithmetical trans�nite recursion, and adding
it to PA gives a system called ATR. ATR is strong enough to prove the
in�nite Ramsey theorem, in fact ATR ismore than enough, because the
in�nite Ramsey theorem does not imply arithmetical trans�nite recur-
sion. However, arithmetical trans�nite recursion is considered a better
axiom to add to PA, because it has more interesting equivalents.

¿e strongest set existence axiom currently considered natural is
called Π

 comprehension. ¿e symbol Π
 indicates that the properties

φ(n) de�ning sets are allowed to include one universal set quanti�er.
Such a quanti�er arises in the de�nition of a well-ordering R ofN, where
one says that R is a linear ordering and that every subset of N has a least
member under the ordering relation R. ¿e system with Π

 compre-
hension as its set existence axiom is called Π

-CA. ¿e systems RCA,
WKL, ACA, ATR, andΠ

-CA are known as the “big �ve” because to-
gether they cover most theorems that arise in ordinary mathematics and
their set existence axioms attract large families of theorems into their
“orbits” (logical equivalence classes relative to the axioms of RCA).

¿e systems ATR and Π
-CA can both handle countable well-

orderings, and their theorems typically have a set-theoretic �avor. An
example, equivalent toΠ

 comprehension, is the Cantor-Bendixson the-
orem stating that an uncountable closed subset of R is the union of a
countable set and a perfect set. ¿eorems of this �avor are on the mar-
gins of “ordinary” analysis, so analysts may well be content with the the-
orems of RCA, WKL, and ACA. However, some important theorems
of combinatorics lie above the level of ACA.We have already seen one—
the in�nite Ramsey theorem—and two even more spectacular examples
are the theorems of Kruskal () and Robertson and Seymour ().

¿e¿eorems of Kruskal and Robertson-Seymour

Before stating the theorems in question, I would like tomention a “baby”
theorem of the same type, known as the ascending/descending sequence
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principle (ADS): any in�nite sequence of rational numbers contains an in-
�nite monotonic subsequence. ¿is theorem has some of the �avor of the
Bolzano-Weierstrass theorem (and is a consequence of it) but it seems
simpler. Nevertheless, it is not trivial because it is not provable in RCA.
Rather mysteriously, ADS does not seem to �t neatly in the “big �ve”
system at all: it lies somewhere below ACA but is not in WKL. (See
Hirschfeldt () for the complicated known facts about ADS.)

¿e theorems of Kruskal and Robertson-Seymour can also be ex-
pressed in the form “in�nite sequence contains an in�nite monotonic
subsequence,” but the objects are �nite graphs rather than numbers, and
the orderings are relations appropriate for �nite graphs rather than the
usual order relation for numbers. For readers not familiarwith graph the-
ory I recommend the book Diestel (), which explains the order re-
lations of “embedding” and “graph minor” and gives a proof of Kruskal’s
theorem. In this subsection I wish only to point out the remarkable po-
sition of the Kruskal and Robertson-Seymour theorems relative to the
“big �ve” systems.

¿e usual statements of the theorems are as follows:

Kruskal’s theorem. If T,T,T, . . . is an in�nite sequence of �nite trees,
then Ti embeds in Tj for some i < j.

Robertson-Seymour theorem. IfG,G,G, . . . is an in�nite sequence of
�nite graphs, then Gi is a minor of Gj for some i < j.

We obtain equivalent statements about in�nite monotonic sub-
sequences as follows. Given an in�nite sequence T,T,T, . . . of �nite
trees, consider the trees Tm that embed in no tree Tn with m < n. By
Kruskal’s theorem there are only �nitely many such Tm. ¿en, if we re-
move these Tm from the given sequence, each remaining tree Ti embeds
in some Tjwith i < j. ¿erefore, we can form an in�nite subsequence

Ti h Ti h Ti h � ,

where h denotes the “embeds in” relation. A similar argument applies
to �nite graphs under the graph minor relation, so we can also state the
theorems as follows (imitating the statement of ADS).

Kruskal’s theorem.Any in�nite sequence of �nite trees contains an in�nite
subsequence that is increasing under the “embeds in” relation.
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Robertson-Seymour theorem.Any in�nite sequence of �nite graphs con-
tains an in�nite subsequence that is increasing under the graph minor
relation.

Here now are the known results, due to Friedman et al. (), which
show the lo y position of these theorems relative to the “big �ve” systems:
Kruskal’s theorem is not provable in ATR, and the Robertson-Seymour
theorem is not provable in Π

-CA.



C H A P T E R 
■■■■■

A Bigger Picture

In this book I have tried to minimize technicalities from logic and com-
putability theory, in order to maximize understanding of reverse mathe-
matics by ordinary mathematicians.¿is has meant, however, that many
ideas from logicwerementioned brie�y and thendropped—perhaps leav-
ing some readers eager to know more. (I hope so!)

¿is �nal chapter aims to pick up some of the dropped ideas and set
them in a bigger picture of logic and computability theory. It is still not a
detailed picture, but I hope that it is a useful sketch, and that interested
readers will be able to pick up more details from the sources I suggest.

¿e chapter begins with a sketch of constructivemathematics. Origi-
nally developed by aminority ofmathematicians opposed to using actual
in�nities, constructive mathematics contributed some useful techniques
for computable mathematics in systems such as RCA.

¿is is followed by sections on the completeness of logic and the in-
completeness of PA and related systems. ¿ese results reveal mathemat-
ics as an arena where theorems cannot always be proved outright, but
in which all of their logical equivalents can be found. ¿is creates the
possibility of reverse mathematics, where one seeks equivalents that are
suitable as axioms.

Next we explain how computability theory helps us to distinguish the
equivalence classes of theorems, and �nally make a few speculative re-
marks on the ordering of the equivalence classes, and how this throws
light on the concept of mathematical depth.



A BIGGER PICTURE ■ 

. CONSTRUCTIVEMATHEMATICS

¿e discovery that real numbers correspond to sets of natural numbers
was the key to the arithmetization of analysis described in chapter . At
the same time, Cantor’s  discovery that R is uncountable raised the
old specter of actual in�nity. Most mathematicians overcame their fear
of actual in�nity because R was by then necessary (or at least conve-
nient) in their work. But a few eminent mathematicians rejected actual
in�nity and declared that they would accept only constructive objects in
mathematics—objects that would later be called “computable.”

¿e �rst advocate of constructive mathematics was the number theo-
rist Leopold Kronecker (–). Kronecker was in favor of arithme-
tization, but only as far as one could take it by constructive processes.
He famously rejected the fundamental theorem of algebra (FTA) in fa-
vor of what he called his “fundamental theorem of general arithmetic,”
because the classical FTA located the solutions of equations inC—anon-
constructible set. Instead he constructed, for each irreducible polynomial
p(x) with integer coe�cients, the domain of “integer polynomials mod
p(x),” in which the equation p(x) =  has a solution in the form of the
equivalence class of x. Kronecker’s construction is computable, in the
modern sense, and it can be used to prove the classical FTA in RCA.
¿e latter proof, perhaps, might have overcome Kronecker’s objections
to the classical FTA.

But later constructivists had other objections to classicalmathematics—
and to classical logic.¿enext eminent constructivist was L. E. J. Brouwer
(–). Brouwer made his name by outstanding contributions to
topology, such as the invariance of dimension (no continuous bijection
between Rm and Rn whenm x n) and the Brouwer �xed point theorem
mentioned in section .. Like Kronecker, Brouwer insisted that math-
ematical objects must be “constructed,” so an object cannot be claimed
to “exist” until a construction of it is given. Because of this, Brouwer re-
jected many classical theorems in which existence is proved without giv-
ing a construction. He likewise insisted that an object cannot be declared
“nonexistent” until its existence is constructively shown to lead to con-
tradiction. In this sense, we cannot (yet) claim that a string of  consec-
utive zeros in the decimal expansion of π is either existent or nonexistent.
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For reasons like this, Brouwer rejected a law of classical logic: the law of
excluded middle, which says that, for any proposition φ, either φ or  φ is
true.

¿e ideas of Kronecker and Brouwer are considered extreme bymost
mathematicians. Nevertheless, they have been useful in �elds of mathe-
matics involving computation, since the concept of “computable” seems
to capture the previously vague concept of “constructive.” Constructive
proofs can o en be put to use in RCA when classical proofs are not
constructive enough, and because of this RCA seems to capture the con-
tent of “constructive analysis” pretty well. ¿e match is not perfect, since
RCA uses classical logic, but the constructivist origins of many proofs
in reverse mathematics are documented in Simpson ().

¿us, reverse mathematics has a big debt to constructive mathemat-
ics. It has, in my opinion, repaid its debt. By accepting classical logic and
noncomputable functions, reverse mathematics can explain why theo-
rems are provable in one system but not in another, and can thereby
measure “how nonconstructive” are some of the theorems rejected by
constructivists. ¿e answer is o en “not very.” Brouwer rejected some
of his own theorems, such as the �xed point theorem, as being noncon-
structive.1 But we now know, thanks to reverse mathematics, that the
�xed point theorem is not far outside constructive mathematics, since it
is constructively equivalent to the weak Kőnig lemma.

. PREDICATE LOGIC

¿e language of logic has been mentioned, in passing, several times in
this book. ¿e language of PA and its extensions such as RCA are part
of a general language of predicate logic, which includes symbols for

variables: x, y,x, . . . ,X,Y,Z, . . .
constants: a,b, c, . . .
function symbols: f, g,h, . . .
predicate symbols: P,Q,R, . . .
logic symbols: ,,-, ,�,�,∀,§, plus parentheses and commas.

1In  Brouwer gave a lecture series in Berlin, in which he rejected the intermediate
and extreme value theorems, the Bolzano-Weierstrass theorem, and �nally his own �xed
point theorem. See the biography of Brouwer by van Dalen (), pp.  and . Van
Dalen’s book is an excellent introduction to Brouwer’s ideas in both topology and the
foundations of mathematics, as well as being a fascinating account of Brouwer’s life.



A BIGGER PICTURE ■ 

We have also mentioned, in passing, certain formulas that are logically
valid; that is, true under all interpretations of the non-logic symbols. For
example, for any formulas φ and ψ the following are valid:

 (φ,ψ)� ( φ) - ( ψ),
 (φ-ψ)� ( φ) , ( ψ).

But we have not given rules of inference for �nding logically valid for-
mulas, or even said whether a complete set of rules exists. In fact, a com-
plete set of rules was �rst given by Frege (), though his rules were
not known to be complete at the time.

¿e existence of a complete set of rules for generating the valid for-
mulas was �rst proved by Gödel (). I will not give a completeness
proof here, because one may be found in many textbooks of mathemati-
cal logic, and also in Stillwell (). But in fact a rather similar proof has
already been given in section . of this book.¿ere we showed that any
consistent set of sentences (of PA, but the proof works for any sentences
of predicate logic) has an interpretation that makes them all true.

By a similar argument one can show that there is a set of falsi�cation
rules, which falsify any sentence that is false under some interpretation.
¿e rules repeatedly reduce the length of the sentence. For example, to
falsify  (φ - ψ) it su�ces to falsify one of the shorter sentences  φ or
 ψ because  (φ - ψ) � ( φ) , ( ψ). ¿e rules succeed by breaking
formulas down to their smallest parts, at which point it is clear whether
they can be falsi�ed or not. Now, the reverse of a falsi�cation rule is a
rule for proof—in this case: from  φ or  ψ infer  (φ - ψ). In this way,
the completeness of the falsi�cation process gives a complete set of rules
for proving all logically valid formulas.

¿is argument, I think, gives the general idea of the completeness
proof, and how it is related to the theorem in section .. What the two
have in common is reliance on the weak Kőnig lemma to obtain an in-
�nite path in a tree: in section . to �nd an interpretation satisfying a
consistent set of formulas; here to �nd an interpretation falsifying an in-
valid formula.¿is is no accident.¿e completeness theorem for predicate
logic is yet another equivalent of the weak Kőnig lemma.

¿is equivalence reveals some noncomputability in predicate logic.
Indeed it was proved by Church (a) and Turing () that the prob-
lem of deciding validity in predicate logic is unsolvable. ¿at is, there is no
algorithm for deciding, given an arbitrary formula φ of predicate logic,
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whether φ is logically valid. Once unsolvable problems in computation
are known the unsolvability of the validity problem is not a great sur-
prise. It was already known in  that computation can be arithme-
tized, and this amounts to translating computation into deductions, in
predicate logic, from the axioms of PA. In fact, one can bypass arith-
metization and translate computation into predicate logic directly. ¿is
is how Turing () proved unsolvability of the validity problem, or
the Entscheidungsproblem (“decision problem” in German) as it was then
known.

At any rate, the undecidability of the Entscheidungsproblem throws
new light on Gödel’s completeness theorem. It means that the valid for-
mulas of predicate logic are computably enumerable, but the invalid for-
mulas are not—thus there is a sense in which truth is more accessible
than falsehood! It also means that we can computably enumerate all the-
orems that RCA proves equivalent to, say, the weak Kőnig lemma or the
monotone convergence theorem, or any other statement we care to as-
sume.¿is is the best we can hope for, because it is not generally possible
to prove theorems outright, as we will see from many angles in the next
section.

¿e main value of an axiom system for mathematics, such as RCA,
is its ability to prove equivalences between theorems it cannot prove out-
right. We can view RCA as shown in �gure .: as a “planet” of theo-
rems proved outright, surrounded by “rings” or “orbits” of theorems that
RCA can prove equivalent to each other. ¿us the ring WKL contains
all theorems in the orbit of the weak Kőnig lemma, the ring ACA con-
tains all theorems in the orbit of the monotone convergence theorem,
and there are in�nitely many rings further out, because there is no end
to the theorems a consistent system cannot prove.

¿is is the message of Gödel incompleteness, which we study in the
next section. Gödel completeness mitigates the e�ect of Gödel incom-
pleteness, a little, by allowing all equivalents of a given unprovable sen-
tence to be found.

¿e hard part of axiomatic mathematics is showing unprovability of
sentences in the base theory. It has always been so. As we saw in chapter
, it was hard to show that the parallel axiom is not provable fromEuclid’s
other axioms, and hard to show that the axiom of choice is not provable
in ZF. In both cases great ingenuity was needed to construct a model of
the base theory in which the axiom in question did not hold. ¿e same
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Figure . : RCA and two of its rings. (Fromapicture of Saturn and its rings created from
images obtained by NASA’s Cassini spacecra on Oct. , , by Gordan Ugarkovic.)
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is true, though perhaps not to such an epic extent, of the axioms not
provable in RCA, such as the weak and strong Kőnig lemmas. We say
more about our evolving understanding of unprovability in the next two
sections.

. VARIETIES OF INCOMPLETENESS

Section . outlined a connection between unsolvability and incomplete-
ness, and sections . and . mentioned the unprovability of consis-
tency. It is worth saying a little more about di�erent versions of incom-
pleteness, because the step from each kind to the next involves an inter-
esting idea.

. ¿e computably enumerable, noncomputable set D gives the ex-
istence of unprovable theorems of the form n ~> D in any formal
system.
As we said in section ., D is not computable because its comple-
ment N − D is not computably enumerable, being di�erent from
the nth computably enumerable set (which we will now call Wn)
with respect to the number n. Namely: n > D � n > Wn, so
n > N − D� n ~>Wn.
But a formal system, by de�nition, has a computably enumerable
set of theorems, so we can computably enumerate its theorems of
the form n ~> D. Since N − D is not computably enumerable, these
theorems (if correct) do not include all true statements of the form
n ~> D.

. Suppose that our formal system F is consistent and that the set of
n for which F proves “n ~> Wn” is the computably enumerable set
Wm. We can also assume that F is strong enough to prove n >Wn

whenever this is true, because there is a computable enumeration
of all theWn. What can we say about the sentence “m ~>Wm”?
If F proves “m ~> Wm,” then m > Wm, by de�nition of Wm. But
we have assumed that F can prove all such true statements, so F
also proves “m >Wm,” contradicting its consistency. SoF does not
prove “m ~> Wm,” which means m ~> Wm, by the de�nition ofWm

again.¿us “m ~>Wm” is a speci�c true sentence thatF fails to prove.
Notice that the sentence “m ~>Wm” essentially says “I am not prov-
able,” because m ~> Wm means “m ~> Wm” is not provable, by de�-
nition ofWm.
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. By arithmetizing computation we can �nd a speci�c unprovable
sentence of PA that is equivalent to m ~> Wm, and hence is un-
provable, assuming that PA is consistent. Arithmetization of formal
deduction in PA enables us to express the consistency of PA by a
sentence in the language of PA, Con(PA).

. Version  shows that “Con(PA)� m ~> Wm,” and version  shows
that the proof can be carried out in PA. It follows that Con(PA) can-
not be proved in PA, otherwise modus ponens would give a proof
of “m ~>Wm,” andwe know that “m ~>Wm” has no proof in PA.¿us
PA, if consistent, cannot prove its own consistency, and neither can
any consistent system that includes PA, because a similar argument
would apply.2

¿is is a brilliant train of thought—one of themost stunning inmath-
ematics. Versions  and  are like those found by Post in the s, and re-
viewed by him in Post (). Versions  and  are essentially the �rst and
second incompleteness theorems of Gödel (), though Gödel found
the �rst theorem di�erently, by directly constructing a sentence that says
“I am not provable.” Interestingly, Gödel �rst proved incompleteness for
a higher-level system ofmathematics because he did not immediately re-
alize that computation could be arithmetized. He was prompted to arith-
metize by von Neumann, according to Wang ():

In September  . . .Gödel announced his result . . .VonNeumann
was very enthusiastic about the result and had a private discus-
sion with Gödel. In this discussion, von Neumann asked whether
number-theoretical undecidable propositions could also be con-
structed . . . and expressed his belief that it could be done. . . . Shortly
a erward Gödel, to his own astonishment, succeeded in turning
the undecidable proposition into a polynomial form preceded by
quanti�ers (over natural numbers).

Von Neumann also deserves credit for the second incompleteness the-
orem, because he pointed out unprovability of consistency in a letter to
Gödel (von Neumann ()) before Gödel announced the result him-
self. ¿ese incompleteness theorems are a wonderful feat of logic but, of

2Moreover, the argument applies to certain weaker systems in which computation is
representable, such as RCA and WKL. ¿is is why we were able to say, in section .,
that WKL cannot prove Con(WKL).
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the unprovable sentences found so far, only Con(PA) is of intrinsic in-
terest, and it is interesting mainly to logicians. In fact, all known unprov-
able sentences of PA have been devised by logicians.¿e onemost nearly
like “normal” mathematics is the Paris-Harrington theorem mentioned
in section ..

RCA is incomplete in an interesting way because it fails to prove
some ordinary mathematical sentences, such as the monotone conver-
gence theorem. And this unprovability comes directly from a computably
enumerable, noncomputable set, with no logical contortions. By seeking
unprovability in systems other than PA, reverse mathematics �nds well-
known theorems not provable from (what some people think are) natural
axiom systems.

. COMPUTABILITY
Degrees of Unsolvability

In section . we introduced an enumeration of computable partial func-
tionsΦ,Φ,Φ, . . .andmentioned that the computably enumerable sets
are the domains of these functions. We now letWn denote the domain
of Φn, soW,W,W, . . . is an enumeration of all computably enumer-
able sets. Since Φn(m) is a computable partial function of the two vari-
ables m,n, the set K = �P(m,n) � m > Wn� (where P is the pairing
function introduced in section .) is computably enumerable and it en-
codes the sequence W,W,W . . . . We call K a universal computably
enumerable set.

Post () introduced essentially the same set and observed that the
membership problem for any computably enumerable set is “reducible”
to that of K, in the following way: to decide whether m > Wn, compute
P(m,n) and ask whether P(m,n) > K. It follows that the membership
problem for K is unsolvable because we know from section . that there
are particularWm with unsolvable membership problem, such as the set
D de�ned there.

More generally, we may be able to “reduce” a set Ab N to a set B b N
by an algorithm that correctly answers each question “Does n > A?”
when given the answers to all questions of the form “Does m > B?” Post
called this reducibility notion Turing reducibility because it was intro-
duced brie�y by Turing (). We now denote Turing reducibility by
BT, so the reducibility of D to K can be written D BT K. It so happens
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(though it is not obvious) that K BT D too, in which case we say that D
and K have the same Turing degree, or the same degree of unsolvability.

So far we know two degrees of unsolvability. All computable sets have
the same (trivial) degree, denoted by , and somewhere above  is the
degree of K and D, denoted by ′ and called the Turing jump of . It can
be shown, with some di�culty, that there are degrees of unsolvability
between  and ′, but �nding degrees greater than ′ is easy by iterating
the Turing jump.

We apply the Turing jump to any set X b N by giving algorithms the
answers to all questions “Doesm > X?”¿is yields setsWX

 ,WX
 ,WX

 , . . .
computably enumerable in X and one, KX = �P(m,n) � m >WX

n �, with
maximal Turing degree.¿edegree ofKX is called the Turing jumpof the
degree of X. In particular, when X = K the degree ofKX is ′′, the double
Turing jump of . By iterating this construction we obtain an in�nite
ascending sequence of degrees  <T ′ <T ′′ <T ′′′ <T � .

And Arithmetically De�nable Sets

As we know from chapter , the computably enumerable sets are pre-
cisely the Σ sets. So it follows from the results of the previous subsection
that each Σ set has Turing degree BT ′. It is not the case that every set
of degree BT ′ is Σ , but it can be proved that all such sets are in Σ, by
arithmetizing the concept of computation relative to the Σ set K.

More generally, we can prove that any set in Σn has degree BT (n)
(the nth jump of ) and that any set of degree BT (n) is in Σn+. So the
arithmetically de�nable sets are precisely those of degree BT (n) for some
n. Also, (n) is the maximal degree of sets in Σn, so the “arithmetic com-
plexity” of a set (measured by the number of quanti�ers in its de�nition)
keeps pace with its “computational complexity” (measured by the num-
ber of jumps). A classic account of the relation between computability
and the arithmetically de�nable sets is in Rogers ().

Low Degrees

¿eparallel between arithmetic complexity and computational complex-
ity enables us to bound the arithmetic complexity of sets by bounding
their computational complexity. ¿is is the right way to bound the com-
plexity of models ofWKL, and hence to show thatWKL is weaker than
ACA.
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¿e appropriate computational concept is that of low degree, de�ned
to be a Turing degree whose jump is ′. A theorem of computability the-
ory says that an in�nite tree of low degree has an in�nite path of low degree
(for a proof, see Simpson (), p. ), so a collection of low-degree
subsets of N satis�es the weak Kőnig lemma and hence is a model of
WKL.

But this collection does not include all arithmetically de�nable sets
(in fact, it includes only Σ sets), so it is not a model of ACA. ¿is ex-
plains more fully the claim in section . that ACA is stronger than
WKL.

In fact, both proofsmentioned in section . can be based on low de-
gree sets. One proof is the one just described: some low degree sets form
a model of WKL but not of ACA because they do not include all arith-
metically de�nable sets.¿e other proof argues that this collection of low
degree sets can be de�ned in ACA, by arithmetizing computation.¿us
ACA can de�ne a model of WKL, and hence prove the consistency of
WKL. WKL itself cannot do this, by Gödel’s second incompleteness
theorem, so ACA is stronger than WKL.

. SET THEORY

Beyond the basic analysis discussed in this book there are areas that rely
on set theory, particularly the axiom of choice. An example is measure
theory. A certain amount ofmeasure theory can be done in weak systems
such as WKL, in fact in a system called WWKL with an even weaker
Kőnig lemma. But none of the “big �ve” can touch what is arguably the
fundamental question of measure theory: which subsets ofR are measur-
able?¿e answer to this question depends on AC, and more.

For example, AC implies that nonmeasurable sets exist, but the nature
of the nonmeasurable sets depends on further axioms not provable in
ZF. In ZF alone, it is consistent for all subsets of R to be measurable,
whileweaker choice axioms still hold. For an introduction to the complex
interplay between measure theory and set theory, see Stillwell ().

Axiomsof choice also control the existence of objects in algebra. Struc-
tures such as rings, �elds, and vector spaces are virtually as “arbitrary” as
arbitrary sets, so associated objects such as

• maximal ideal of a ring,
• algebraic closure of a �eld, and
• basis of a vector space
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can generally not be explicitly de�ned, only “called into being” by some
axiom of choice. Algebraists frequently use a general-purpose equivalent
of AC known as Zorn’s lemma, which states the existence of a maximal
object in a collection of sets partially ordered by containment.

For example, among the collection of independent sets in a vector
space, a maximal element is a basis. We have already mentioned, in sec-
tion ., that existence of a basis is equivalent to AC. ¿e existence of
maximal ideals and algebraic closures is also not provable in ZF, though
choice axioms weaker than AC su�ce to prove them. Proofs from Zorn’s
lemmaof the three results abovemay be found, for example, inAbhyankar
(), pp. –.

If we consider only countable algebraic structures, then they are well-
ordered by de�nition and the need for AC disappears. Instead, by coding
the structures by sets of natural numbers, reverse mathematics can come
into play, and indeed the existence ofmaximal structures is nicely related
to RCA, WKL, and ACA:

• Existence of a maximal ideal in a countable commutative ring is
equivalent to ACA.

• Existence of the algebraic closure of countable �eld is provable in
RCA.

• Uniqueness of the algebraic closure of a countable �eld is equiva-
lent to WKL.

• Existence of a basis for a countable vector space overQ is equivalent
to ACA.

¿ese theorems are due to Friedman et al. (), and proofs may be
found in Simpson ().¿ey reveal quite surprising equivalences, over
RCA, between theorems in analysis and countable algebra. To take a
random example, the Cauchy convergence criterion is equivalent to the
existence of a maximal ideal in a countable ring.

AC in Elementary Analysis

As mentioned above, ZF alone cannot decide certain questions of ad-
vanced analysis, such as the existence of nonmeasurable sets of real num-
bers. In elementary analysis it is possible to avoid using the full strength
of ZF—indeed we have seen that ACA is strong enough to prove the ba-
sic theorems, and even quite advanced ones such as the Riemann map-
ping theorem. But to use ACA we have to formulate the basic theorems
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appropriately. In particular, we have to avoid mention of arbitrary sets
of real numbers or intervals in theorems such as Bolzano-Weierstrass or
Heine-Borel.

¿e strongest formulation of Bolzano-Weierstrass, which appears in
some textbooks, is the following: a bounded in�nite set of real numbers
contains a convergent subsequence. ¿is formulation of Bolzano-
Weierstrass is not even provable in ZF, because in ZF it is not possible
to prove that an in�nite set S of real numbers contains an in�nite se-
quence s, s, s, . . . . ¿e obvious way to prove this claim, of course, is
to choose a member s > S, then a member s > S − �s�, then a mem-
ber s > S − �s, s�, and so on. Since S is in�nite, this process gives
an in�nite sequence s, s, s, . . . contained in S but it involves an in�-
nite sequence of choices, and hence appeals to AC. Cohen () in fact
constructed a model of ZF in which there is a bounded in�nite set of
real numbers containing no in�nite sequence, so the strong formulation
of Bolzano-Weierstrass is not provable in ZF.

¿e same model of ZF can be used to construct a function f which
is “sequentially continuous” at a certain point x = a—in the sense that
f(an) has limit f(a) for each sequence an with limit a—although f is
not continuous at x = a. Under AC, sequential continuity at a point is
equivalent to actual continuity at a point. So this equivalence is not prov-
able in ZF, although it is assumed in some textbooks of analysis, such as
Abbott ().

. CONCEPTS OF “DEPTH”

Mathematicians o en call a theorem “deep” if it is some way fundamen-
tal, revealing, and hard to prove. ¿e proof of a deep theorem is o en
uncovered only through the work of generations of mathematicians, by
which time the theorem has been found to underlie many others. Ex-
amples from the recent history of mathematics are the prime number
theorem, the classi�cation of �nite simple groups, and the graph minor
theorem mentioned in section ..

¿e deepest theorems of mathematics are understood by so few peo-
ple that there is probably no hope of saying precisely what makes them
deep. Amore realistic goal is to look at the “relative depth” of somemore
approachable theorems. Under what conditions might we say that¿eo-
rem A is “deeper than”¿eorem B?
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One way, which should suggest itself to any reader of this book, is to
�nd a natural axiom system that proves ¿eorem B but not ¿eorem A.
With this criterion, the axiom systems considered in this book allow us
to rank many theorems by relative depth. For example:

• ¿e parallel axiom is deeper than the theorems proved by Euclid’s
other axioms.

• AC is deeper than the theorems proved by ZF.
• ¿e extreme value theorem is deeper than the intermediate value
theorem.

• ¿e sequential Bolzano-Weierstrass theorem is deeper than the se-
quential Heine-Borel theorem.

• ¿e Riemann mapping theorem is deeper than the Jordan curve
theorem.

In all of these examples, we �nd theorems that are not only harder to
prove, but also fundamental, in the sense of underlying many other the-
orems.¿us reverse mathematics has exposed a precise and newmathe-
matical concept, which might well be an indicator of “depth.”

However, wemust admit that reversemathematics has so far revealed
signs of “depth” only in theorems about in�nite objects, such as real num-
bers or subsets ofN.¿ere has been little progress on theorems about the
natural numbers. ¿e only examples where we might say ¿eorem A is
“deeper than”¿eorem B is where¿eorem B is provable in PA and¿e-
orem A is not. Few such examples are known (see section .), and they
do not include theorems that number theorists really think are deep, such
as the prime number theorem.

As mentioned in section ., there was once thought to be a distinc-
tion between “elementary” methods in number theory andmethods that
essentially involve analysis. ¿at idea evaporated when an elementary
proof of the prime number theoremwas found in , and in section .
we have seen how reverse mathematics con�rms that analysis is inessen-
tial in number theory—at least the analysis available in ACA.

Still, one feels there ought to be a distinction between “elementary”
and “analytic” methods. Finding it remains a challenge for the reverse
mathematics of the future.
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in elementary formal systems, 
language of, 
Peano, 

arithmetical comprehension, , , , 
implies Kőnig in�nity lemma, 
implies sequential Bolzano-Weierstrass,


implies sequential least upper bound, 
arithmetical trans�nite recursion, 
arithmetically de�nable sets, , , 

and the Turing jump, 
arithmetization, xii, 

as foundation of mathematics, 
classical, 
limits of, 
of analysis, xii, , , 
of computable analysis, 
of computable enumeration, 
of computation, xii, , , , 
of continuous functions, 
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arithmetization (continued)
of elementary formal systems, 
of geometry, 
of logic, 
of real numbers, 
of recursion, , 
of trees, , 

ASA, , 
ascending/descending sequence principle,


ATR, 
axiom

Archimedean, , 
arithmetical comprehension, , , 
ASA, 
choice, xi, 
circle intersection, 
completeness, , 
parallel, xi, 
recursive comprehension, , 
right, xii, 
SAS, , 
set existence, xii, , 
Σ induction, 
weak Kőnig lemma, 

axiom of choice, xi, 
and measure theory, 
and strong Bolzano-Weierstrass, 
equivalents, , 
in algebra, 
introduced by Zermelo, 
right axiom for well-ordering, 

axioms
ACA, 
congruence, 
�eld, 
for analysis, 

based on PA, 
Hilbert, 
incidence, 
of formal system, 
order, 
Peano, xii, 
RCA, 
real vector space, 
ring, 
WKL, 

base theory
for analysis, , , , 
for Euclidean geometry, , , 
for Hilbert’s geometry, 
for non-Euclidean geometry, 

for set theory, , 
basis, 

Hamel, 
of countable vector space over Q, 
of �nite-dimensional vector space, 
of general vector space, 

Beltrami, Eugenio, , 
big �ve, –, 
binary tree, 

and Cantor set, , 
complete, , 
of interpretations, 
vertex labeling, , 
with no computable in�nite path, 

Blass, Andreas, 
Bolyai, Farkas, 
Bolyai, János, 
Bolzano, Bernard, 

and intermediate value theorem, 
assumed least upper bounds, 

Bolzano-Weierstrass theorem, , , 
strong formulation, 
and Kőnig in�nity lemma, 
classical proof, 
sequential, , 

implies Cauchy criterion, 
Boolean combination, , , 

by EFS, 
Boolean formula, 
Boolean operation, , , , 
Borel, Émile, 
Brouwer, L. E. J., 

�xed point theorem, , 
provable in WKL, 

invariance of dimension, , 
invariance of domain, 
rejected classical logic, 
rejected his own theorem, 

C, 
is a �eld, 

calculus, xi
Cantor set, , , 

and ternary expansions, 
as binary tree, 
complementary intervals, 
covering intervals, 
due to H. J. S. Smith, 

Cantor, Georg
and actual in�nity, 
assumed well-ordering, 
diagonal argument, 
pairing function, 
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set, , 
theorem on subsets, 
uncountability proof, , 

is constructive, 
Cantor-Bendixson theorem, 
Cauchy, Augustin-Louis

continuity concept, 
convergence criterion, xii, , 

implies monotone convergence, 
Chinese remainder theorem, 
Church, Alonzo, 

thesis, , 
computably enumerable is Σ , 

closed interval, 
Cohen, Paul, 
completeness

of logic, , 
of R, , , 

via Cauchy criterion, 
via least upper bounds, , 
via nested intervals, , 

completeness axiom, 
comprehension

arithmetical, , , , 
Π
, 

recursive, , , 
Σ , , 

computability, xii, 
and analysis, , 
and Church’s thesis, 
and de�nability, 
and incompleteness, 
and RCA, 
origins in logic, , 
Post formalization, 
Smullyan formalization, 
theory, 
Turing formalization, 

computable
analysis, 

in PA language, 
function, , 

is both Σ and Π

 , 

is total, 
increasing sequence, 
in�nite path, , 
list, 
partial function, , 

enumeration, 
property, 
separation, 
sequence, 

with noncomputable limit, , 

set, xii, , 
tree, 

with no computable in�nite path, 
computable set, xii, 

computable characteristic function, 
self and complement are computably
enumerable, , , , 

solvable membership problem, 
computably enumerable set, , , , 

can be noncomputable, , 
coincides with Σ set, , , 
domain of computable partial function,


range of computable function, 
universal, 

computably inseparable sets, 
computation, xii, 

and analysis, 
arithmetization of, xii, , 
by EFS, , 
by Turing machine, 
by word replacement, 
formalization of, 
relative, 
Turing concept, 

Con(PA), , , 
and the consistency of ACA, 

Con(WKL), , 
concatenation, , 

and EFS operations, 
connective, , 
constructive mathematics, , 

adapted by RCA, 
and computability, 

continuity, , 
and intermediate values, 
and Riemann integral, 
at a point, 
Hausdor� characterization, 
in RCA, 
of polynomial function, 
on a set, 
sequential, , 
uniform, , 

fails on open intervals, 
implies Riemann integrability, 
modulus of, 

convergence, 
Cauchy criterion, 
of sequence, 

Dedekind, Richard, xi, 
book on irrational numbers, 
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Dedekind, Richard (continued)
cuts, , , 
least upper bound principle, 

degree of unsolvability, 
low, 

depth, xi, 
and elementary methods, 
and provability, 

Descartes, René, 
Géométrie, 

diagonal argument, 
in RCA, 
on computably enumerable sets, 

double entry bookkeeping, 
dyadic numeral, 

encoding, 

EFS. See elementary formal system
EFS-generated set, 

existential quanti�cation of, 
is Σ , 
of n-tuples, 
projection of, 

EFS-representable relation, 
Einstein, Albert, 
elementary formal system, 

and Turing machines, , 
arithmetic in, 
arithmetization of, 
axioms, 
examples, 
language, 
rules of inference, 
theorems, 
universal, 

encoding, 
by dyadic numerals, 
continuous function, 

by a real, 
by rational intervals, 
in RCA, 

�nite sequences, 
by concatenation, 
by Gödel β-function, 

Entscheidungsproblem, 
Euclid, xi

Elements, , , 
foundation of mathematics, 
overlooked axioms, 
parallel axiom, , 
theory of irrationals, , 

Euclidean geometry, 
base theory, 

unique model, 
vector base theory, 
via vector geometry, 

Euclidean plane, 
extreme value theorem, xii, , , 

fails on open intervals, 
implies weak Kőnig lemma, 

fallen leaf, 
Fermat, Pierre, 
�eld

algebraic closure of, 
Archimedean ordered, 
axioms, 
complete Archimedean ordered, 
ordered, 
properties, , 

via induction, 
�nite sequences, 

encoding, 
by concatenation, 
by Gödel β-function, 

representing proofs, 
formal system, , , 

axioms, 
consistency, 
elementary, 
incompleteness, , 
rules of inference, 
unprovability of consistency, 
unsound, 

foundations of mathematics, xi, 
in arithmetization, 
in Euclid, 

Fraenkel, Abraham, 
Frege, Gottlob, 
Friedman, Harvey, xii, xiii, 

introduced Σ induction, 
on PA and ACA, 
on right axioms, 
on theorems of ACA, 

FTA. See fundamental theorem of algebra
Fueter, Rudolph, 
function, 

arithmetically representable, 
as set of ordered pairs, 
characteristic, 
composition, 
computable, , 

is both Σ and Π

 , 

continuous, 
encoded by rational intervals, 
encoded by real, 
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encoded by subset of N, 
given by values at rationals, 
in RCA, 

de�ned by recursion, 
pairing, 
partial, 
representable in PA, 
successor, 

fundamental theorem of algebra, 
proof in RCA, 
provable in RCA, 

gaps, 
Gauss proof of FTA, , 
geometry, xi

a�ne, 
algebraic, 
Euclidean, , 
linear, 
non-Euclidean, , 
projective, 
spherical, 
three-dimensional Euclidean, 
vector, 

Gödel, Kurt, 
β-function, , 
completeness, 
derailed the Hilbert program, 
�rst incompleteness, , , 
second incompleteness, , , , 

graph minor, 
Grassmann, Hermann, 

based arithmetic on induction, 
proofs of algebraic properties, 
vector space geometry, 

great circle, 
greatest lower bound, 

halting problem, 
Hamel, Georg, 
Hamilton, William Rowan, 
Harriot, ¿omas, 
Hausdor�, Felix, 

characterization of continuity, 
Heine-Borel theorem, xii, , , 

applied to trees, 
fails on open intervals, 
implies weak Kőnig lemma, 

proof, 
sequential, , , 

Hilbert, David, xi
axioms for geometry, 

algebraic content, 

Grundlagen der Geometrie, 
on mathematical existence, 
program, , 
second problem, 
tenth problem, 

incompleteness, 
Gödel’s �rst, , 
Gödel’s second, 
in analysis, 
of PA, , 
of RCA, 
omega, 
Post form, 

induction, 
axiom schema, 
de�nition by, , 
in PA, , 
proofs by, , 
set variable, , 
Σ , , 

in�nite
bisection, , , 

as tree construction, 
continued fraction, 
decimal, , 
path

computable, , 
in tree, , , 

pigeonhole principle, 
process, 
Ramsey theorem, 
sum, 

in�nity
actual, 
line at, 
potential, 

inner product, 
and Pythagorean theorem, 
Minkowski, 
positive de�nite, 

intermediate value theorem, xii, , , 
and completeness of R, 
attempted proof by Bolzano, 
classical proof, 
implies FTA, 
proof in RCA, 
provable in RCA, 

irrationality, 
and in�nite sets, 
in Euclid, 
of
º
, 

isosceles triangle theorem, 
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Jordan curve theorem, , 
implies weak Kőnig lemma, 
provable in WKL, 

Kőnig, Dénes, 
Kőnig in�nity lemma, , 

and completeness of R, 
implies range existence, 
strength, 
strong form, 
weak form, 
weak weak form, 

Kronecker, Leopold, 
advocated constructive mathematics, 
rejected FTA, 

Kruskal’s theorem, 
not provable in ATR, 

Lambert, Joachim Heinrich, 
Landau, Edmund, 
law of excluded middle, 
least upper bound, 

as limit, 
noncomputable, 

least upper bound principle, 
assumed by Bolzano, 
not provable in RCA, 
proved by Dedekind, 
sequential, , 

implies monotone convergence, 
Legendre, Adrien-Marie, 
limit, , 

algebraic properties, 
noncomputable, 
of computable sequence, 
of function, 
of nested intervals, 
of sequence, , 
point

of Q, 
of sequence, 
of set, 

line
at in�nity, 
in Euclid Book V, 

low degree, , 
and Turing jump, 
model of WKL, 
paths in trees, 

lower Dedekind cut, , , 

mathematical physics, xi
Matijasevič, Yuri, 

unsolvability of Hilbert’s tenth, 
maximal ideal, 

of countable commutative ring, 
measure theory, 
Minkowski, Hermann, 
model, , 

hyperboloid, 
of ACA, 
of arithmetic without induction, 
of Euclidean geometry, 
of non-Euclidean geometry, 
of RCA, , 
of spherical geometry, 
of WKL, , 
of ZF, 
showing unprovability, 

modus ponens, , 
monotone convergence theorem, , 

equivalent to arithmetical comprehen-
sion, 

equivalent to Bolzano-Weierstrass, 
implies arithmetical comprehension, 
implies range existence, 
unprovable in computable analysis, 

N, 
natural number, xii, , 
neighborhood, 
non-Euclidean geometry, , 

area, , 
disk model, 
distance, 
falsi�es parallel axiom, 
hyperboloid model, 
in vector space, 
satis�es basic Euclidean axioms, 
triangle, 

number
complex, 
integer, 
irrational, 
natural, xii, , 
negative, 
rational, xii, , 
real, xi, , 

addition, 
as lower Dedekind cut, 
multiplication, 
ordering, 
positive, 

numeral
base , 
base , 
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dyadic, 
in PA, 
unary, 

open interval, , 
open set, 
ordered pair, , , 
ordering, 

of Q, 
of R, , 

PA. See Peano arithmetic
Pacioli, Luca, 
pairing function, 

and k-tupling functions, 
in PA, 

Pappus theorem, 
parallel axiom, xi, 

concerns in�nity, 
equivalent to Pythagorean theorem, 
equivalents, , 
falsi�ed by non-Euclidean geometry, 
in Euclid, 
right axiom for Euclid, 

Paris-Harrington theorem, , 
not provable in PA, 

Peano arithmetic, 
and analysis, 
as basis for analysis, 
contained in ACA, 
de�nable properties, 
de�nable relations, 
in ACA, 
is incomplete, 
language, 

for analysis, 
pairing function, , 
projection functions, 

Peano axioms, xii, 
in foundations of mathematics, 

Peano, Giuseppe, 
axioms for arithmetic, 
axioms for vector space, 

Π
 , 

Π
 comprehension, 

Π
-CA, 

Poincaré, Henri, xi
on arithmetization of analysis, 

Polthier, Konrad, 
Pólya, Georg, 
Post, Emil, 

analysed Principia Mathematica, 
and the word problem, 

co-discovered Turing machines, 
computably enumerable sets, , 
discovered incompleteness, , , 
formalized computability, 
normal systems, 
translation of Turing machines, 

predicate logic, 
completeness, 

and weak Kőnig lemma, 
falsi�cation rules, 
language, 
rules of inference, 
validity problem, 

prenex form, , , 
prime number theorem, , 

elementary proofs, 
Principia Mathematica, 
problem, 

Entscheidungs, 
halting, , 
Hilbert’s tenth, 
membership, , 
self-examination, 
validity, 

projection
function, , , 
of EFS-generated set, 
stereographic, 

projective geometry, 
Pythagorean theorem, xi, 

arithmetized, 
equivalent to parallel axiom, 
proof by areas, 
statement, 
via inner product, 

Q, 
completion of, 
is a �eld, 
ordering, 

quanti�er, 
alternation, 
bounded, 

by EFS, 

R, , , 
algebraic characterization, 
an actual in�nity, 
and foundations, 
completeness, 

Cauchy criterion, 
least upper bound, 
nested interval, , 
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R (continued)
completeness properties, 
geometric characterization, 
has no gaps, , 
is a �eld, 
is uncountable, 
least upper bound property, 
ordering, 
well-ordering of, 

Ramsey theorem, 
baby, 
�nite, 
for triples, 

equivalent to arithmetical compre-
hension, 

in�nite, 
for pairs, 
not provable in ACA, , 
provable in ACA, 

range existence, 
implies Σ comprehension, 
not provable in RCA, , 

rational number, xii
RCA, xii, , 

adapts constructive mathematics, 
and algebraic closure, 
and arithmetic, 
and computability, 
and constructive mathematics, 
as computable analysis, 
axioms, 
base theory for analysis, , , , 
cannot prove range existence, , 
compares theorem strengths, 
de�nition of, 
encoding of computable sequences, 
encoding of continuous functions, 
equivalence proofs, , 
�nds equivalents of

arithmetical comprehension, 
weak Kőnig lemma, 

has Σ induction, , 
incompleteness, 
lacks least upper bound principle, 
minimal model, , 
non-theorems, , 
proves FTA, , 
proves intermediate value theorem, ,


proves uncountability of R, 
real number concept, , 
realizes Σ condition by function, 

reason for name, 
real number, xi, , 

as lower Dedekind cut, 
in RCA, 
ordering, 

real vector space, 
axioms, , 

recursion
arithmetization of, , 
de�nition by, , 

recursive
de�nition, , , 

arithmetized, 
usage of word, , , 

recursive comprehension, , , , 
reverse mathematics, xi, , , , 

and constructiveness, 
big �ve, –, 
of algebra, 
of analysis, 
of number theory, , 
seeks equivalents of axioms, 

Riemann integral, , 
and weak Kőnig lemma, 

Riemann mapping theorem, 
implies arithmetical comprehension, 

ring
axioms, 
properties, , 

via induction, 
Robertson-Seymour theorem, 

not provable in Π
-CA, 

rule of inference, 

Saccheri, Girolamo, 
SAS, , 
Schön�ies theorem, 
self-reference, , 
sequence, 

as function on N, , 
computable, 
convergent, 
in RCA, 
limit of, , 
noncomputable, 
of nested intervals, , 
of real numbers, 
with noncomputable least upper bound,


with noncomputable limit, 
set

arithmetically de�nable, , 
Cantor, 
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computable, xii, , 
computably enumerable, , , 
containment orders R, 
EFS-generated, 
encoding, 
in�nite, 

as mathematical object, , 
limit point, 
noncomputable, 
of low degree, 
of rational numbers, 
of real numbers, 
open, 
uncountable, 
well-ordered, 

set existence axiom, xii, , , , , 
set theory, xi, 

base theory ZF, , , 
Σ, , 
Σ , , 

as range of function in Σ and Π

 , 

by existential quanti�cation of Σ, 
comprehension, 

implies arithmetical comprehension,

implies range existence, 

induction, , 
is computably enumerable, , 
is EFS-generated, , 
property, 

Simpson, Stephen, 
Sir Walter Raleigh, 
Skolem form, , 
Skolem function, 
Skolem term, 
Smullyan, Raymond, , 
Sperner’s lemma, , 
spherical geometry, 

planar model, 
standard model, 
triangle, 

area, º
, 

stereographic projection, 
strength, xii

of ACA in arithmetic, 
of analysis theorems, 
of axiom, xii
of parallel axiom, 
of RCA, WKL, ACA, 
of set existence axiom, 
relative to RCA, , 

theorem
Bolzano-Weierstrass, , 
Brouwer �xed point, 
Cantor-Bendixson, 
extreme value, xii, , 
Harriot, 
Heine-Borel, xii, , 
intermediate value, xii, 
isosceles triangle, 
Jordan curve, 
Kruskal, 
monotone convergence, , 
Pappus, 
Paris-Harrington, 
prime number, 
Pythagorean, xi, , 
Ramsey, 
Riemann mapping, 
Robertson-Seymour, 
Schön�ies, 
uniform continuity, 
well-ordering, , 

tree
arithmetization, , 
as set of binary strings, 
as set of �nite sequences, 
binary, , 
complete binary, 
computable, 

with no computable in�nite path, 
concept in analysis, , 
embedding, 
fallen leaf, 
�nitely branching, , 
for in�nite bisection, 
in�nite path in, , 
vertex labeling, 

truth tables, 
Turing, Alan, , 

analysis of computation, 
convinced Gödel, 

computable numbers, 
degree, 
jump, 
machine, , 

con�guration, 
simulated by EFS, 
universal, 

reducibility, 
unsolvability

of Entscheidungsproblem, 
of halting problem, 
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uncountability of R, 
leads to incompleteness, 
provable in RCA, 

uniform continuity
classical proof, 
equivalent to weak Kőnig, 
implies Riemann integrability, 
modulus of, 
via sequential Heine-Borel, 

universal
algorithm, 
computably enumerable set, 
elementary formal system, 
Turing machine, 

unsolvability
degree of, , 
implies incompleteness, 
of Entscheidungsproblem, 
of halting problem, 
of Hilbert’s tenth problem, 
of membership problem, , 
of self-examination problem, 
of validity problem, 
of word problem, 

vector geometry, 
vector space, 

addition, 
basis, 

equivalent to AC, 
over arbitrary �eld, 
real, 
scalar multiplication, 

von Neumann, John
co-discovered second incompleteness,


prompted arithmetization, 

Wallis, John, 
weak Kőnig lemma, , 

and analysis, , 
and binary trees, , 
and logic completeness, 
and predicate logic, 
and Riemann integrability, 
de�nes WKL, , 
equivalent to uniform continuity, 
implies extreme value theorem, 
implies sequential Heine-Borel, 
in logic, 
really is weaker, 

well-ordering, , 
countable, 
of R, 
of Z, 
theorem, , 

Weyl, Hermann, 
WKL, xii, , 

and algebraic closure, 
and weak Kőnig lemma, 
de�nition of, 
has Σ induction, 
model in ACA, 
modeled by low sets, , 
theorems, 

WWKL, 

Z, 
Zermelo, Ernst, 

axioms for set theory, 
introduced AC, 

ZF, , 
base theory for set theory, 

Zorn’s lemma, 
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